Asymptotics for the time dependent Ginzburg-Landau equations

被引:3
|
作者
Fan, JS [1 ]
Ding, SJ
机构
[1] Nanjing Forestry Univ, Basic Courses Div, Nanjing 210037, Jiangsu, Peoples R China
[2] S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
[3] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China
关键词
asymptotic behavior; Ginzburg-Landau equations; heat flow for harmonic maps;
D O I
10.1006/jdeq.1998.3539
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that as epsilon --> 0 the solution of the complex Ginzburg-Landau equation u(t) - Delta u = (1/epsilon(2)) u(1-\u\(2)), in Omega x R+ converges to the unique solution of the heat flow for harmonic maps Into S-1 under the assumption that the initial and boundary maps have zero degree. (C) 1999 Academic Press.
引用
收藏
页码:241 / 255
页数:15
相关论文
共 50 条
  • [11] LINEAR RESPONSE THEORY AND TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS
    HOUGHTON, A
    PHYSICAL REVIEW B, 1971, 3 (05): : 1625 - &
  • [12] Asymptotic behaviour of time-dependent Ginzburg-Landau equations of superconductivity
    Rodriguez-Bernal, A
    Wang, BX
    Willie, R
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1999, 22 (18) : 1647 - 1669
  • [13] Gevrey class regularity for the time-dependent Ginzburg-Landau equations
    D. Chae
    J. Han
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1999, 50 : 244 - 257
  • [14] Time-dependent Ginzburg-Landau equations for rotating and accelerating superconductors
    Lipavsky, P.
    Bok, J.
    Kolacek, J.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2013, 492 : 144 - 151
  • [16] Implicit integration of the time-dependent Ginzburg-Landau equations of superconductivity
    Gunter, DO
    Kaper, HG
    Leaf, GK
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (06): : 1943 - 1958
  • [17] Stability of periodic solutions of the time-dependent Ginzburg-Landau equations
    Zaouch, Fouzi
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2006, 86 (07): : 521 - 538
  • [18] Lp solutions to the time-dependent Ginzburg-Landau equations of superconductivity
    Wang, Shouhong
    Zhan, Mei-Qin
    Nonlinear Analysis, Theory, Methods and Applications, 1999, 36 (06): : 661 - 677
  • [19] Solution theory of the coupled Time-Dependent Ginzburg-Landau equations
    Chen, Shuhong
    Guo, Boling
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2009, 2 (1-2) : 1 - 20
  • [20] Gevrey class regularity for the time-dependent Ginzburg-Landau equations
    Chae, DH
    Han, JM
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (02): : 244 - 257