LACEABILITY PROPERTIES IN EDGE TOLERANT CORONA PRODUCT GRAPHS

被引:0
|
作者
Gomathi, P. [1 ]
Murali, R. [2 ]
机构
[1] BMS Coll Engn, Dept Math, Bengaluru, India
[2] Dr Ambedkar Inst Technol, Dept Math, Bengaluru, India
关键词
Hamiltonian graph; Hamiltonian laceable graph; Hamiltonian-t-laceable graph; Corona graph;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A connected graph G is termed Hamiltonian-t-laceable if there exists in it a Hamiltonian path between every pair of vertices u and v with the property d(u, v) = t, 1 <= t <= diam(G), where t is a positive integer. The corona product of G and H, denoted by GoH is obtained by taking one copy of G called the center graph, vertical bar V (G)vertical bar copies of H called the outer graph and taking the i th vertex of G adjacent to every vertex of the ith copy of H where 1 <= i <= vertical bar V(G)vertical bar. In this paper, we establish laceability properties in the edge tolerant corona product graph K(n)oP(m).
引用
收藏
页码:734 / +
页数:8
相关论文
共 50 条
  • [31] Identifying codes of corona product graphs
    Feng, Min
    Wang, Kaishun
    DISCRETE APPLIED MATHEMATICS, 2014, 169 : 88 - 96
  • [32] The normalized Laplacian spectra of the corona and edge corona of two graphs
    Chen, Haiyan
    Liao, Liwen
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (03): : 582 - 592
  • [33] The signless Laplacian spectra of the corona and edge corona of two graphs
    Wang, Shilin
    Zhou, Bo
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (02): : 197 - 204
  • [34] Edge-fault-tolerant pancyclicity and bipancyclicity of Cartesian product graphs with faulty edges
    Cheng, Chia-Wen
    Hsieh, Sun-Yuan
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2016, 82 (05) : 767 - 781
  • [35] On spanning laceability of bipartite graphs
    Sabir, Eminjan
    Meng, Jixiang
    Qiao, Hongwei
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 480
  • [36] Some Indices Of Edge Corona Of Two Graphs
    Abdolhosseinzadeh, Irandokht Rezaee
    Rahbarnia, Freydoon
    Tavakoli, Mostafa
    APPLIED MATHEMATICS E-NOTES, 2018, 18 : 13 - 24
  • [37] Hamiltonian-laceability of star graphs
    Hsieh, SY
    Chen, GH
    Ho, CW
    NETWORKS, 2000, 36 (04) : 225 - 232
  • [38] Hamiltonian-laceability of star graphs
    Hsieh, SY
    Chen, GH
    Ho, CW
    THIRD INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS, AND NETWORKS, PROCEEDINGS (I-SPAN '97), 1997, : 112 - 117
  • [39] ON EDGE PRODUCT CORDIAL GRAPHS
    Ivanco, Jaroslav
    OPUSCULA MATHEMATICA, 2019, 39 (05) : 691 - 703
  • [40] On the strong metric dimension of corona product graphs and join graphs
    Kuziak, Dorota
    Yero, Ismael G.
    Rodriguez-Velazquez, Juan A.
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (7-8) : 1022 - 1027