On spanning laceability of bipartite graphs

被引:0
|
作者
Sabir, Eminjan [1 ]
Meng, Jixiang [1 ]
Qiao, Hongwei [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi, Peoples R China
关键词
Bipartite graph; Biclosure; Hamiltonicity; Spanning disjoint paths; DISJOINT PATH COVERS; CONNECTIVITY;
D O I
10.1016/j.amc.2024.128919
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (A, B; E) be a balanced bipartite graph with bipartition (A, B) . For a positive integer t and two vertices a e A and b e B , a bi- (t; a, b)-path-system of G is a subgraph S consisting of t internally disjoint (a, b)-paths. Moreover, a bi- (t; a, b)-path-system is called a spanning bi- (t; a, b)- path-system if V(S) spans V(G) . If there is a spanning bi- (t; a, b)-path-system between any a e A and b e B then G is said to be spanning t-laceable. In this paper, we provide a synthesis of sufficient conditions for a bipartite graph to be spanning laceable in terms of extremal number of edges, bipartite independence number, bistability, and biclosure. As a byproduct, a classic result of Moon and Moser (1963) [9] is extended.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The spanning laceability on the faulty bipartite hypercube-like networks
    Lin, Cheng-Kuan
    Teng, Yuan-Hsiang
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    Marusic, Dragan
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) : 8095 - 8103
  • [2] Bipartite graphs with even spanning trees
    Hoffman, Dean G.
    Walsh, Matt
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 3 - 6
  • [3] Spanning caterpillar in biconvex bipartite graphs
    Antony, Dhanyamol
    Das, Anita
    Gosavi, Shirish
    Jacob, Dalu
    Kulamarva, Shashanka
    DISCRETE APPLIED MATHEMATICS, 2024, 356 : 32 - 36
  • [4] Spanning bipartite graphs with high degree sum in graphs
    Chen, Guantao
    Chiba, Shuya
    Gould, Ronald J.
    Gu, Xiaofeng
    Saito, Akira
    Tsugaki, Masao
    Yamashita, Tomoki
    DISCRETE MATHEMATICS, 2020, 343 (02)
  • [5] Spanning trees in complete bipartite graphs and resistance distance in nearly complete bipartite graphs
    Ge, Jun
    Dong, Fengming
    DISCRETE APPLIED MATHEMATICS, 2020, 283 (283) : 542 - 554
  • [6] Enumeration for spanning forests of complete bipartite graphs
    Jin, YL
    Liu, CL
    ARS COMBINATORIA, 2004, 70 : 135 - 138
  • [7] Spanning k-trees of Bipartite Graphs
    Kano, Mikio
    Ozeki, Kenta
    Suzuki, Kazuhiro
    Tsugaki, Masao
    Yamashit, Tomoki
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (01):
  • [8] Embedding Spanning Bipartite Graphs of Small Bandwidth
    Knox, Fiachra
    Treglown, Andrew
    COMBINATORICS PROBABILITY & COMPUTING, 2013, 22 (01): : 71 - 96
  • [9] Strong Spanning Laceability of Mesh
    Peng, Sheng-Lung
    Zhang, Lili
    Fang, Jianxi
    Lin, Cheng-Kuan
    Chen, Hong
    JOURNAL OF INTERNET TECHNOLOGY, 2020, 21 (07): : 2055 - 2064
  • [10] Spanning Bipartite Graphs with Large Degree Sum in Graphs of Odd Order
    Chiba, Shuya
    Saito, Akira
    Tsugaki, Masao
    Yamashita, Tomoki
    GRAPHS AND COMBINATORICS, 2021, 37 (05) : 1841 - 1858