Strain relaxation in epitaxial GaAs/Si (001) nanostructures

被引:6
|
作者
Kozak, Roksolana [1 ]
Prieto, Ivan [1 ,2 ]
Dasilva, Yadira Arroyo Rojas [1 ]
Erni, Rolf [1 ]
Skibitzki, Oliver [3 ]
Capellini, Giovanni [3 ,4 ]
Schroeder, Thomas [3 ,5 ]
von Kanel, Hans [1 ,2 ]
Rossell, Marta D. [1 ]
机构
[1] Empa Swiss Fed Labs Mat Sci & Technol, Electron Microscopy Ctr, Dubendorf, Switzerland
[2] ETH, Lab Solid State Phys, Zurich, Switzerland
[3] IHP, Dept Mat Res, Frankfurt, Oder, Germany
[4] Univ Roma Tre, Dipartimento Sci, Rome, Italy
[5] Brandenburg Tech Univ Cottbus, Inst Phys, Cottbus, Germany
基金
瑞士国家科学基金会;
关键词
Dislocations; stacking faults; twins; strain relaxation; HADF-STEM; GaAs; Si nanostructures; ELECTRON-MICROSCOPY; DISLOCATIONS; SEMICONDUCTORS; SI(001); SILICON; CDTE; HETEROSTRUCTURES; DEFECTS; METALS; MISFIT;
D O I
10.1080/14786435.2017.1355117
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Crystal defects, present in similar to 100 nm GaAs nanocrystals grown by metal organic vapour phase epitaxy on top of (0 0 1)-oriented Si nanotips (with a tip opening 50-90 nm), have been studied by means of high-resolution aberration-corrected high-angle annular dark-field scanning transmission electron microscopy. The role of 60 degrees perfect, 30 degrees and 90 degrees Shockley partial misfit dislocations (MDs) in the plastic strain relaxation of GaAs on Si is discussed. Formation conditions of stair-rod dislocations and coherent twin boundaries in the GaAs nanocrystals are explained. Also, although stacking faults are commonly observed, we show here that synthesis of GaAs nanocrystals with a minimum number of these defects is possible. On the other hand, from the number of MDs, we have to conclude that the GaAs nanoparticles are fully relaxed plastically, such that for the present tip sizes no substrate compliance can be observed.
引用
收藏
页码:2845 / 2857
页数:13
相关论文
共 50 条
  • [21] Molecular beam epitaxial growth and characterization of Be(Zn)Se on Si(001) and GaAs(001)
    Chauvet, C
    Tournié, E
    Faurie, JP
    [J]. JOURNAL OF CRYSTAL GROWTH, 2000, 214 : 95 - 99
  • [22] Strain relaxation of epitaxial SiGe layer and Ge diffusion during Ni silicidation on cap-Si/SiGe/Si(001)
    Jang, C. H.
    Sardela, M. R., Jr.
    Kim, S. -H
    Song, Y. -J
    Lee, N. -E
    [J]. APPLIED SURFACE SCIENCE, 2006, 252 (15) : 5326 - 5330
  • [23] Strain status of epitaxial Ge film on a Si (001) substrate
    Zhao, Chunwang
    Wen, Shumin
    Hou, Qingyu
    Qiu, Wei
    Xing, Yongming
    Su, Shaojian
    Cheng, Buwen
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2016, 90 : 87 - 92
  • [24] STRAIN RELAXATION IN SI1-XGEX LAYERS ON SI(001)
    CAPANO, MA
    HART, L
    BOWEN, DK
    GORDONSMITH, D
    THOMAS, CR
    GIBBINGS, CJ
    HALLIWELL, MAG
    HOBBS, LW
    [J]. JOURNAL OF CRYSTAL GROWTH, 1992, 116 (3-4) : 260 - 270
  • [25] Strain and relaxation in InAs and InGaAs films grown on GaAs(001)
    Woicik, JC
    Miyano, KE
    Pellegrino, JG
    Shaw, PS
    Southworth, SH
    Karlin, BA
    [J]. APPLIED PHYSICS LETTERS, 1996, 68 (21) : 3010 - 3012
  • [27] Phonon study of temperature evolution of strain in GaAs/Si(001) and GaAs/Si(111) heterostructures
    Quagliano, LG
    Sobiesierski, Z
    Orani, D
    Ricci, A
    [J]. PHYSICA B, 1999, 263 : 775 - 778
  • [28] Strain in Si or Ge from the Edge Forces of Epitaxial Nanostructures
    Lodari, M.
    Chrastina, D.
    Mondiali, V.
    Barget, M. R.
    Frigerio, J.
    Bonera, E.
    Bollani, M.
    [J]. NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2017, 9 (07) : 1128 - 1131
  • [29] Strain relaxation in epitaxial Pt films on (001) SrTiO3
    Son, Junwoo
    Cagnon, Joel
    Stemmer, Susanne
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (04)
  • [30] Progression of Strain Relaxation in Linearly-Graded GaAs1-yPy/GaAs (001) Epitaxial Layers Approximated by a Finite Number of Sublayers
    Kujofsa, Tedi
    Ayers, John E.
    [J]. MICROELECTRONICS AND OPTOELECTRONICS, 2017, 60 : 11 - 24