Strain relaxation in epitaxial GaAs/Si (001) nanostructures

被引:6
|
作者
Kozak, Roksolana [1 ]
Prieto, Ivan [1 ,2 ]
Dasilva, Yadira Arroyo Rojas [1 ]
Erni, Rolf [1 ]
Skibitzki, Oliver [3 ]
Capellini, Giovanni [3 ,4 ]
Schroeder, Thomas [3 ,5 ]
von Kanel, Hans [1 ,2 ]
Rossell, Marta D. [1 ]
机构
[1] Empa Swiss Fed Labs Mat Sci & Technol, Electron Microscopy Ctr, Dubendorf, Switzerland
[2] ETH, Lab Solid State Phys, Zurich, Switzerland
[3] IHP, Dept Mat Res, Frankfurt, Oder, Germany
[4] Univ Roma Tre, Dipartimento Sci, Rome, Italy
[5] Brandenburg Tech Univ Cottbus, Inst Phys, Cottbus, Germany
基金
瑞士国家科学基金会;
关键词
Dislocations; stacking faults; twins; strain relaxation; HADF-STEM; GaAs; Si nanostructures; ELECTRON-MICROSCOPY; DISLOCATIONS; SEMICONDUCTORS; SI(001); SILICON; CDTE; HETEROSTRUCTURES; DEFECTS; METALS; MISFIT;
D O I
10.1080/14786435.2017.1355117
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Crystal defects, present in similar to 100 nm GaAs nanocrystals grown by metal organic vapour phase epitaxy on top of (0 0 1)-oriented Si nanotips (with a tip opening 50-90 nm), have been studied by means of high-resolution aberration-corrected high-angle annular dark-field scanning transmission electron microscopy. The role of 60 degrees perfect, 30 degrees and 90 degrees Shockley partial misfit dislocations (MDs) in the plastic strain relaxation of GaAs on Si is discussed. Formation conditions of stair-rod dislocations and coherent twin boundaries in the GaAs nanocrystals are explained. Also, although stacking faults are commonly observed, we show here that synthesis of GaAs nanocrystals with a minimum number of these defects is possible. On the other hand, from the number of MDs, we have to conclude that the GaAs nanoparticles are fully relaxed plastically, such that for the present tip sizes no substrate compliance can be observed.
引用
收藏
页码:2845 / 2857
页数:13
相关论文
共 50 条
  • [1] Spectroscopic ellipsometry study on strain relaxation of CdTe/GaAs(001) epitaxial films
    Kim, KJ
    Lee, MH
    Kang, TW
    Han, MS
    [J]. SOLID STATE COMMUNICATIONS, 1998, 106 (09) : 597 - 600
  • [2] Strain relaxation in epitaxial Ge crystals grown on patterned Si(001) substrates
    Dasilva, Yadira Arroyo Rojas
    Rossell, Marta D.
    Isa, Fabio
    Erni, Rolf
    Isella, Giovanni
    von Kanel, Hans
    Groning, Pierangelo
    [J]. SCRIPTA MATERIALIA, 2017, 127 : 169 - 172
  • [3] Comparison of strain relaxation in epitaxial Si0.3Ge0.7 films grown on Si(001) and Ge(001)
    Demczyk, BG
    Naik, VM
    Hameed, S
    Naik, R
    [J]. MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2002, 94 (2-3): : 196 - 201
  • [4] Nano epitaxial growth of GaAs on Si (001)
    Hsu, Chao-Wei
    Chen, Yung-Feng
    Su, Yan-Kuin
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (13)
  • [5] Analysis of strain relaxation by microcracks in epitaxial GaAs grown on Ge/Si substrates
    Colombo, D.
    Grilli, E.
    Guzzi, M.
    Sanguinetti, S.
    Marchionna, S.
    Bonfanti, M.
    Fedorov, A.
    von Kanel, H.
    Isella, G.
    Mueller, E.
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 101 (10)
  • [6] REDISTRIBUTION OF EPITAXIAL SI ON (001) GAAS DURING OVERGROWTH BY GAAS
    BRANDT, O
    CROOK, GE
    PLOOG, K
    WAGNER, J
    MAIER, M
    [J]. APPLIED PHYSICS LETTERS, 1991, 59 (21) : 2730 - 2732
  • [7] Strain relaxation by pit formation in epitaxial SiGe alloy films grown on Si(001)
    [J]. 1600, American Inst of Physics, Woodbury, NY, USA (88):
  • [8] Strain relaxation by pit formation in epitaxial SiGe alloy films grown on Si(001)
    Di Gaspare, L
    Palange, E
    Capellini, G
    Evangelisti, F
    [J]. JOURNAL OF APPLIED PHYSICS, 2000, 88 (01) : 120 - 123
  • [9] STRAIN RELAXATION DURING THE SURFACTANT MODIFIED EPITAXIAL-GROWTH OF GE/SI(001)
    THORNTON, JMC
    WILLIAMS, AA
    MACDONALD, JE
    VANSILFHOUT, RG
    FINNEY, MS
    NORRIS, C
    [J]. SURFACE SCIENCE, 1992, 273 (1-2) : 1 - 8
  • [10] Lattice strain relaxation in GaAs/InP(001) and GaAs/GaP(001) heterostructures
    Francesio, L
    Franzosi, P
    Attolini, G
    Pelosi, C
    [J]. SOLID STATE COMMUNICATIONS, 1996, 97 (09) : 781 - 783