Factorization of the non-stationary schrodinger operator

被引:9
|
作者
Cerejeiras, Paula [1 ]
Vieira, Nelson [1 ]
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
关键词
Nonlinear PDE's; parabolic Dirac operators; iterative methods;
D O I
10.1007/s00006-007-0039-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a factorization of the non-stationary Schrodinger operator based on the parabolic Dirac operator introduced by Cerejeiras, Kahler and Sommen. Based on the fundamental solution for the parabolic Dirac operators, we shall construct appropriated Teodurescu and Cauchy-Bitsadze operators. Afterwards we will describe how to solve the nonlinear Schrodinger equation using Banach fixed point theorem.
引用
收藏
页码:331 / 341
页数:11
相关论文
共 50 条
  • [1] Regularization of the non-stationary Schrodinger operator
    Cerejeiras, Paula
    Vieira, Nelson
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (05) : 535 - 555
  • [2] Factorization of the Non-Stationary Schrödinger Operator
    Paula Cerejeiras
    Nelson Vieira
    [J]. Advances in Applied Clifford Algebras, 2007, 17 : 331 - 341
  • [3] STATIONARY OPERATOR FOR NON-STATIONARY PROCESSES
    ZUBAREV, DN
    [J]. DOKLADY AKADEMII NAUK SSSR, 1965, 164 (03): : 537 - &
  • [4] ON THE SOLUTION OF THE NON-STATIONARY SCHRODINGER EQUATION
    Mishcharina, Elena Yuryevna
    Libin, Eduard Efimovich
    Bubenchikov, Mikhail Alekseevich
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2016, (05): : 28 - 34
  • [5] Riemann Integral Operator for Stationary and Non-Stationary Processes
    Alexandrovich, I. M.
    Lyashko, S. I.
    Sydorov, M. V. -S.
    Lyashko, N. I.
    Bondar, O. S.
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 2021, 57 (06) : 918 - 926
  • [6] Riemann Integral Operator for Stationary and Non-Stationary Processes
    I. M. Alexandrovich
    S. I. Lyashko
    M. V.-S. Sydorov
    N. I. Lyashko
    O. S. Bondar
    [J]. Cybernetics and Systems Analysis, 2021, 57 : 918 - 926
  • [7] Intertwining relations of non-stationary Schrodinger operators
    Cannata, F
    Ioffe, M
    Junker, G
    Nishnianidze, D
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (19): : 3583 - 3598
  • [8] THE SHIFT OPERATOR FOR NON-STATIONARY STOCHASTIC PROCESSES
    GETOOR, RK
    [J]. DUKE MATHEMATICAL JOURNAL, 1956, 23 (01) : 175 - 187
  • [9] Numerical Clifford analysis for the non-stationary Schrodinger equation
    Faustino, N.
    Vieira, N.
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 742 - +
  • [10] Schrodinger cat states of a non-stationary generalized oscillator
    Castanos, O
    LopezPena, R
    Manko, VI
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (09): : 2091 - 2109