Factorization of the non-stationary schrodinger operator

被引:9
|
作者
Cerejeiras, Paula [1 ]
Vieira, Nelson [1 ]
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
关键词
Nonlinear PDE's; parabolic Dirac operators; iterative methods;
D O I
10.1007/s00006-007-0039-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a factorization of the non-stationary Schrodinger operator based on the parabolic Dirac operator introduced by Cerejeiras, Kahler and Sommen. Based on the fundamental solution for the parabolic Dirac operators, we shall construct appropriated Teodurescu and Cauchy-Bitsadze operators. Afterwards we will describe how to solve the nonlinear Schrodinger equation using Banach fixed point theorem.
引用
收藏
页码:331 / 341
页数:11
相关论文
共 50 条
  • [31] Splitting schemes for non-stationary problems with a rational approximation for fractional powers of the operator
    Vabishchevich, Petr N.
    [J]. Applied Numerical Mathematics, 2021, 165 : 414 - 430
  • [32] Signal Separation Operator Based on Wavelet Transform for Non-Stationary Signal Decomposition
    Han, Ningning
    Pei, Yongzhen
    Song, Zhanjie
    [J]. SENSORS, 2024, 24 (18)
  • [33] Non-stationary lognormal model development and comparison with the non-stationary GEV model
    Aissaoui-Fqayeh, I.
    El-Adlouni, S.
    Ouarda, T. B. M. J.
    St-Hilaire, A.
    [J]. HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2009, 54 (06): : 1141 - 1156
  • [34] Non-stationary signal feature characterization using adaptive dictionaries and non-negative matrix factorization
    Mehrnaz Shokrollahi
    Sridhar Krishnan
    [J]. Signal, Image and Video Processing, 2016, 10 : 1025 - 1032
  • [35] Non-stationary signal feature characterization using adaptive dictionaries and non-negative matrix factorization
    Shokrollahi, Mehrnaz
    Krishnan, Sridhar
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2016, 10 (06) : 1025 - 1032
  • [36] A novel class of solutions of the non-stationary Schrodinger and the Kadomtsev-Petviashvili I equations
    Ablowitz, MJ
    Chakravarty, S
    Trubatch, AD
    Villarroel, J
    [J]. PHYSICS LETTERS A, 2000, 267 (2-3) : 132 - 146
  • [37] Does non-stationary spatial data always require non-stationary random fields?
    Fuglstad, Geir-Arne
    Simpson, Daniel
    Lindgren, Finn
    Rue, Harard
    [J]. SPATIAL STATISTICS, 2015, 14 : 505 - 531
  • [38] Cascading Non-Stationary Bandits: Online Learning to Rank in the Non-Stationary Cascade Model
    Li, Chang
    de Rijke, Maarten
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 2859 - 2865
  • [39] Stationary and Non-Stationary Univariate Subdivision Schemes
    Asghar, Muhammad
    Mustafa, Ghulam
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2018, 50 (03): : 25 - 42
  • [40] Interference of stationary and non-stationary shock waves
    Vladimir Nikolaevich Uskov
    Pavel Sergeevich Mostovykh
    [J]. Shock Waves, 2010, 20 : 119 - 129