Factorization of the Non-Stationary Schrödinger Operator

被引:0
|
作者
Paula Cerejeiras
Nelson Vieira
机构
[1] University of Aveiro,Department of Mathematics
来源
关键词
Primary 30G35; Secondary 35A08, 15A66; Nonlinear PDE’s; parabolic Dirac operators; iterative methods;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a factorization of the non-stationary Schrödinger operator based on the parabolic Dirac operator introduced by Cerejeiras, Kähler and Sommen. Based on the fundamental solution for the parabolic Dirac operators, we shall construct appropriated Teodurescu and Cauchy-Bitsadze operators. Afterwards we will describe how to solve the nonlinear Schrödinger equation using Banach fixed point theorem.
引用
收藏
页码:331 / 341
页数:10
相关论文
共 50 条
  • [1] Factorization of the non-stationary schrodinger operator
    Cerejeiras, Paula
    Vieira, Nelson
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2007, 17 (03) : 331 - 341
  • [2] Absence of Continuous Spectral Types for Certain Non-Stationary Random Schrödinger Operators
    Anne Boutet de Monvel
    Peter Stollmann
    Günter Stolz
    [J]. Annales Henri Poincaré, 2005, 6 : 309 - 326
  • [3] STATIONARY OPERATOR FOR NON-STATIONARY PROCESSES
    ZUBAREV, DN
    [J]. DOKLADY AKADEMII NAUK SSSR, 1965, 164 (03): : 537 - &
  • [4] Some properties for a subfunction associated with the stationary Schrödinger operator in a cone
    Pinhong Long
    Guantie Deng
    [J]. Journal of Inequalities and Applications, 2012
  • [5] Some Schrödinger-type inequalities for stabilization of discrete linear systems associated with the stationary Schrödinger operator
    Zongcai Jiang
    [J]. Journal of Inequalities and Applications, 2016
  • [6] Regularization of the non-stationary Schrodinger operator
    Cerejeiras, Paula
    Vieira, Nelson
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (05) : 535 - 555
  • [7] Riemann Integral Operator for Stationary and Non-Stationary Processes
    Alexandrovich, I. M.
    Lyashko, S. I.
    Sydorov, M. V. -S.
    Lyashko, N. I.
    Bondar, O. S.
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 2021, 57 (06) : 918 - 926
  • [8] Riemann Integral Operator for Stationary and Non-Stationary Processes
    I. M. Alexandrovich
    S. I. Lyashko
    M. V.-S. Sydorov
    N. I. Lyashko
    O. S. Bondar
    [J]. Cybernetics and Systems Analysis, 2021, 57 : 918 - 926
  • [9] RETRACTED ARTICLE: Minimally thin sets associated with the stationary Schrödinger operator
    Tao Zhao
    [J]. Journal of Inequalities and Applications, 2014
  • [10] Retraction Note: Minimally thin sets associated with the stationary Schrödinger operator
    Tao Zhao
    [J]. Journal of Inequalities and Applications, 2021