Design and simulation of vertically-stacked nanowire transistors at 3 nm technology nodes

被引:10
|
作者
Dey, S. [1 ]
Jena, J. [1 ]
Mohapatra, E. [1 ]
Dash, T. P. [1 ]
Das, S. [2 ]
Maiti, C. K. [1 ]
机构
[1] Siksha O Anusandhan Deemed Be Univ, Dept Elect & Commun Engn, Bhubaneswar 75030, Odisha, India
[2] Silicon Inst Technol, Dept Elect & Commun Engn, Bhubaneswar 75104, Odisha, India
关键词
vertically-stacked nanowire FETs; quantum confinement; technology computer aided design (TCAD); density-gradient (DG) model; metal grain granularity (MGG);
D O I
10.1088/1402-4896/ab4621
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Gate-all-around (GAA) cylindrical Si channel nanowire field-effect transistor (NW-FET) devices have the potential to replace FinFETs in future technology nodes because of their better channel electrostatics control. In this work, 3D TCAD physics-based simulations are performed for the first time to evaluate the potential of NW-FETs at extreme scaling limits of 3 nm using quantum corrected 3D density gradient finite element simulations. Simulations are also performed to study the effects of process-induced variabilities, such as metal grain granularity (MGG) on 3 nm gate length device performance in the sub-threshold region. The importance of MGG induced variability for gate-all-around stacked devices having 3 horizontal nanowires in the 3 nm technology nodes is shown.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Design Aspects of Carry Lookahead Adders with Vertically-Stacked Nanowire Transistors
    Sacchetto, Davide
    Ben-Jamaa, M. Haykel
    De Micheli, Giovanni
    Leblebici, Yusuf
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 1715 - 1718
  • [2] Vertically-stacked Silicon Nanowire Transistors with Controllable Polarity: a Robustness Study
    Gaillardon, Pierre-Emmanuel
    Ghasemzadeh, Hassan
    De Micheli, Giovanni
    2013 14TH IEEE LATIN-AMERICAN TEST WORKSHOP (LATW2013), 2013,
  • [3] SiGe superlattice I/O finFETs in a vertically-stacked Gate-All-Around horizontal Nanowire Technology
    Hellings, G.
    Mertens, H.
    Subirats, A.
    Simoen, E.
    Schram, T.
    Ragnarsson, L. -A.
    Simicic, M.
    Chen, S. -H.
    Parvais, B.
    Boudier, D.
    Cretu, B.
    Machillot, J.
    Pena, V.
    Sun, S.
    Yoshida, N.
    Kim, N.
    Mocuta, A.
    Linten, D.
    Horiguchi, N.
    2018 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, 2018, : 85 - 86
  • [4] Design of vertically-stacked polychromatic light-emitting diodes
    Hui, K. N.
    Wang, X. H.
    Li, Z. L.
    Lai, P. T.
    Choi, H. W.
    OPTICS EXPRESS, 2009, 17 (12): : 9873 - 9878
  • [5] Characterization and optimization of junctionless gate-all-around vertically stacked nanowire FETs for sub-5 nm technology nodes
    Sreenivasulu, V. Bharath
    Narendar, Vadthiya
    MICROELECTRONICS JOURNAL, 2021, 116
  • [6] Vertically stacked SiGe nanowire array channel CMOS transistors
    Fang, W. W.
    Singh, N.
    Bera, L. K.
    Nguyen, H. S.
    Rustagi, S. C.
    Lo, G. Q.
    Balasubramanian, N.
    Kwong, D. -L.
    IEEE ELECTRON DEVICE LETTERS, 2007, 28 (03) : 211 - 213
  • [7] Vertically-Stacked Nanowire/FinFETs and Following 2D FETs for Logic Chips
    Wakabayashi, Hitoshi
    2018 IEEE SOI-3D-SUBTHRESHOLD MICROELECTRONICS TECHNOLOGY UNIFIED CONFERENCE (S3S), 2018,
  • [8] A Novel Top-Down Fabrication Process for Vertically-Stacked Silicon-Nanowire Array
    Kim, Kangil
    Lee, Jae Keun
    Han, Seung Ju
    Lee, Sangmin
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [9] Vertically-stacked SOI waveguides for 3-D photonic circuits
    Brooks, C. J.
    Doylend, J. K.
    Knights, A. P.
    Jessop, P. E.
    2006 3RD IEEE INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS, 2006, : 72 - +
  • [10] Vertically Stacked Nanowire MOSFETs for Sub-10 nm Nodes: Advanced Topography, Device, Variability, and Reliability Simulations
    Karner, M.
    Baumgartner, O.
    Stanojevic, Z.
    Schanovsky, F.
    Strof, G.
    Kernstock, C.
    Karner, H. W.
    Rzepa, G.
    Grasser, T.
    2016 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2016,