Indium metal-organic framework with catalytic sites coated conductive graphene for high-performance lithium-sulfur batteries

被引:16
|
作者
Jiao, Xuechao [1 ,2 ]
Deng, Teng [1 ]
Men, Xinliang [1 ]
Zuo, Yinze [2 ]
Wang, Juan [1 ]
机构
[1] Xian Univ Architecture & Technol, Xian Key Lab Clean Energy, Shaanxi Key Lab Nanomat & Nanotechnol, Xian 710055, Shaanxi, Peoples R China
[2] Shanghai Univ, Inst Sustainable Energy, Coll Sci, Shanghai 200444, Peoples R China
关键词
Indium metal-organic frameworks; Catalytic effect; Reduced graphene oxide; Li-S batteries; CATHODE; MOF; POLYSULFIDES; BINDING; SOC;
D O I
10.1016/j.ceramint.2022.02.225
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Metal-organic frameworks (MOFs) with abundant active sites and stable frame structures have great advantages for inhibiting the "shuttle effect" and alleviating volume expansion in lithium-sulfur (Li-S) batteries. However, their inherent poor conductivity hinders their application in Li-S batteries. Herein, with isophthalic acid (IPA) as the organic ligand and indium ions as the central metal, a tetrahedral cubic indium MOF (In-IPA) was synthesized and employed for the first time as a sulfur host. Experimental results suggest that In-IPA has a good catalytic effect on the conversion of polysulfides. Furthermore, three-dimensional In-IPA was coated with reduced graphene oxide (rGO) by the hydrothermal method (In-IPA@rGO). The interlaced rGO network not only significantly enhances the conductivity of In-IPA but also improves the reduction of kinetic reactions and promotes electron transport. Finally, In-IPA@rGO exhibited excellent electrochemical performance as a sulfur host. In particular, it exhibited a considerable initial capacity of 1672.3 mAh g-1 at 0.2 C and a reversible capacity of 898.7 mAh g-1 after 100 cycles. In addition, the initial capacity reached 1376.7 mAh g-1 and retained 519.8 mAh g-1 after 200 cycles at 0.5 C. This work proves that nontransition metal-organic frameworks prepared along with highly conductive rGO have synergistic advantages in Li-S battery applications.
引用
收藏
页码:16754 / 16763
页数:10
相关论文
共 50 条
  • [21] Prussian blue coated with reduced graphene oxide as high-performance cathode for lithium-Sulfur batteries
    Chen, Minghua
    Zhang, Zhanpeng
    Liu, Xiaoxue
    Li, Yu
    Wang, Yuqing
    Fan, He
    Liang, Xinqi
    Chen, Qingguo
    RSC ADVANCES, 2020, 10 (53) : 31773 - 31779
  • [22] Sulfur loaded in curved graphene and coated with conductive polyaniline: preparation and performance as a cathode for lithium-sulfur batteries
    Li, Xiaogang
    Rao, Mumin
    Lin, Haibin
    Chen, Dongrui
    Liu, Yanlin
    Liu, Shizhu
    Liao, Youhao
    Xing, Lidan
    Xu, Mengqing
    Li, Weishan
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (35) : 18098 - 18104
  • [23] Metal-organic framework-74-Ni/carbon nanotube composite as sulfur host for high performance lithium-sulfur batteries
    Xu, Guodong
    Zuo, Yuxiang
    Huang, Bing
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 830 : 43 - 49
  • [24] Fibrous Hybrid of Graphene and Sulfur Nanocrystals for High-Performance Lithium-Sulfur Batteries
    Zhou, Guangmin
    Yin, Li-Chang
    Wang, Da-Wei
    Li, Lu
    Pei, Songfeng
    Gentle, Ian Ross
    Li, Feng
    Cheng, Hui-Ming
    ACS NANO, 2013, 7 (06) : 5367 - 5375
  • [25] Conductive vanadium-based metal-organic framework nanosheets membranes as polysulfide inhibitors for lithium-sulfur batteries
    Wang, Yanan
    Cao, Shuyi
    Zhao, Jiangyuan
    Zhang, Xiongfu
    Du, Xiaohang
    Li, Jingde
    Wu, Feichao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 960
  • [26] Polydopamine-coated separator for high-performance lithium-sulfur batteries
    Zhang, Zhian
    Zhang, Zhiyong
    Li, Jie
    Lai, Yanqing
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (06) : 1709 - 1715
  • [27] Polydopamine-coated separator for high-performance lithium-sulfur batteries
    Zhian Zhang
    Zhiyong Zhang
    Jie Li
    Yanqing Lai
    Journal of Solid State Electrochemistry, 2015, 19 : 1709 - 1715
  • [28] Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium-Sulfur Batteries
    Liang, Xiao
    Garsuch, Arnd
    Nazar, Linda F.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (13) : 3907 - 3911
  • [29] Catalytic engineering for polysulfide conversion in high-performance lithium-sulfur batteries
    Du, Shibo
    Yu, Yiyao
    Liu, Xianbin
    Lu, Dunqi
    Yue, Xiaohan
    Liu, Ting
    Yin, Yanhong
    Wu, Ziping
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 186 : 110 - 131
  • [30] Bimetallic Metal-Organic Framework with High-Adsorption Capacity toward Lithium Polysulfides for Lithium-sulfur Batteries
    Geng, Pengbiao
    Du, Meng
    Guo, Xiaotian
    Pang, Huan
    Tian, Ziqi
    Braunstein, Pierre
    Xu, Qiang
    ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (02) : 599 - 607