Indium metal-organic framework with catalytic sites coated conductive graphene for high-performance lithium-sulfur batteries

被引:16
|
作者
Jiao, Xuechao [1 ,2 ]
Deng, Teng [1 ]
Men, Xinliang [1 ]
Zuo, Yinze [2 ]
Wang, Juan [1 ]
机构
[1] Xian Univ Architecture & Technol, Xian Key Lab Clean Energy, Shaanxi Key Lab Nanomat & Nanotechnol, Xian 710055, Shaanxi, Peoples R China
[2] Shanghai Univ, Inst Sustainable Energy, Coll Sci, Shanghai 200444, Peoples R China
关键词
Indium metal-organic frameworks; Catalytic effect; Reduced graphene oxide; Li-S batteries; CATHODE; MOF; POLYSULFIDES; BINDING; SOC;
D O I
10.1016/j.ceramint.2022.02.225
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Metal-organic frameworks (MOFs) with abundant active sites and stable frame structures have great advantages for inhibiting the "shuttle effect" and alleviating volume expansion in lithium-sulfur (Li-S) batteries. However, their inherent poor conductivity hinders their application in Li-S batteries. Herein, with isophthalic acid (IPA) as the organic ligand and indium ions as the central metal, a tetrahedral cubic indium MOF (In-IPA) was synthesized and employed for the first time as a sulfur host. Experimental results suggest that In-IPA has a good catalytic effect on the conversion of polysulfides. Furthermore, three-dimensional In-IPA was coated with reduced graphene oxide (rGO) by the hydrothermal method (In-IPA@rGO). The interlaced rGO network not only significantly enhances the conductivity of In-IPA but also improves the reduction of kinetic reactions and promotes electron transport. Finally, In-IPA@rGO exhibited excellent electrochemical performance as a sulfur host. In particular, it exhibited a considerable initial capacity of 1672.3 mAh g-1 at 0.2 C and a reversible capacity of 898.7 mAh g-1 after 100 cycles. In addition, the initial capacity reached 1376.7 mAh g-1 and retained 519.8 mAh g-1 after 200 cycles at 0.5 C. This work proves that nontransition metal-organic frameworks prepared along with highly conductive rGO have synergistic advantages in Li-S battery applications.
引用
收藏
页码:16754 / 16763
页数:10
相关论文
共 50 条
  • [11] Metal-organic frameworks for lithium-sulfur batteries
    Zheng, Yan
    Zheng, Shasha
    Xue, Huaiguo
    Pang, Huan
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (08) : 3469 - 3491
  • [12] Metal-organic framework-based catalysts for lithium-sulfur batteries
    Hu, Xuanhe
    Huang, Tian
    Zhang, Gengyuan
    Lin, Shangjun
    Chen, Ruwei
    Chung, Lai-Hon
    He, Jun
    COORDINATION CHEMISTRY REVIEWS, 2023, 475
  • [13] Metal-organic framework-based separator for lithium-sulfur batteries
    Bai, Songyan
    Liu, Xizheng
    Zhu, Kai
    Wu, Shichao
    Zhou, Haoshen
    NATURE ENERGY, 2016, 1
  • [14] Metal-organic framework-based separator for lithium-sulfur batteries
    Bai S.
    Liu X.
    Zhu K.
    Wu S.
    Zhou H.
    Nature Energy, 2016, Nature Publishing Group (01)
  • [15] Conductive metal-organic frameworks promoting polysulfides transformation in lithium-sulfur batteries
    Shuai Wang
    Fanyang Huang
    Zhengfeng Zhang
    Wenbin Cai
    Yulin Jie
    Shiyang Wang
    Pengfei Yan
    Shuhong Jiao
    Ruiguo Cao
    Journal of Energy Chemistry , 2021, (12) : 336 - 343
  • [16] Conductive metal-organic frameworks promoting polysulfides transformation in lithium-sulfur batteries
    Wang, Shuai
    Huang, Fanyang
    Zhang, Zhengfeng
    Cai, Wenbin
    Jie, Yulin
    Wang, Shiyang
    Yan, Pengfei
    Jiao, Shuhong
    Cao, Ruiguo
    JOURNAL OF ENERGY CHEMISTRY, 2021, 63 : 336 - 343
  • [17] Conductive metal-organic framework flowers facilitate the anchoring and conversion kinetics of polysulfides for lithium-sulfur batteries
    Zhao, Xinzhou
    Wang, Yanan
    Fan, Yu
    Wei, Shuaichong
    Li, Jingde
    Wu, Feichao
    JOURNAL OF ENERGY STORAGE, 2023, 70
  • [18] Customized Nano-Confinement Effects of Metal-Organic Frameworks for High-Performance Lithium-Sulfur Batteries
    Weng, Jingqia
    Lu, Haibin
    Zeng, Qinghan
    Xiao, Yingbo
    Yang, Junhua
    Rong, Jionghui
    Zhang, Qi
    Huang, Shaoming
    BATTERIES & SUPERCAPS, 2024,
  • [19] Reinforced Conductive Confinement of Sulfur for Robust and High-Performance Lithium-Sulfur Batteries
    Lai, Chao
    Wu, Zhenzhen
    Gu, Xingxing
    Wang, Chao
    Xi, Kai
    Kumar, R. Vasant
    Zhang, Shanqing
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (43) : 23885 - 23892
  • [20] Cationic covalent-organic framework for sulfur storage with high-performance in lithium-sulfur batteries
    Wang, Shunli
    Liang, Ying
    Dai, Tingting
    Liu, Yalin
    Sui, Zhuyin
    Tian, Xinlong
    Chen, Qi
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 591 : 264 - 272