Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico

被引:83
|
作者
Garcia, Carlos A. [1 ]
Fuentes, Alfredo [2 ,6 ]
Hennecke, Anna [3 ,4 ]
Riegelhaupt, Enrique [5 ]
Manzini, Fabio [1 ]
Masera, Omar [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Invest Energia, Temixco 62580, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Ctr Invest Ecosistemas, Morelia 58190, Michoacan, Mexico
[3] IFEU Inst Energy & Environm Res Heidelberg GmbH, D-69120 Heidelberg, Germany
[4] Univ Bonn, Ctr Dev Res ZEF, D-53113 Bonn, Germany
[5] Red Mexicana Bioenergia AC, Morelia 58341, Michoacan, Mexico
[6] Univ Nacl Autonoma Mexico, Fac Ingn, Mexico City 04510, DF, Mexico
关键词
Sugarcane ethanol; GHG emissions; Energy balance; Life cycle assessment; Biofuel; LAND-USE; BIODIESEL; FUEL;
D O I
10.1016/j.apenergy.2010.12.072
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The purpose of this work was to estimate GHG emissions and energy balances for the future expansion of sugarcane ethanol fuel production in Mexico with one current and four possible future modalities. We used the life cycle methodology that is recommended by the European Renewable Energy Directive (RED), which distinguished the following five system phases: direct Land Use Change (LUC); crop production; biomass transport to industry; industrial processing; and ethanol transport to admixture plants. Key variables affecting total GHG emissions and fossil energy used in ethanol production were LUC emissions, crop fertilization rates, the proportion of sugarcane areas that are burned to facilitate harvest, fossil fuels used in the industrial phase, and the method for allocation of emissions to co-products. The lower emissions and higher energy ratios that were observed in the present Brazilian case were mainly due to the lesser amount of fertilizers applied, also were due to the shorter distance of sugarcane transport, and to the smaller proportion of sugarcane areas that were burned to facilitate manual harvest. The resulting modality with the lowest emissions of equivalent carbon dioxide (CO2e) was ethanol produced from direct juice and generating surplus electricity with 36.8 kgCO(2e)/GJ(ethanol). This was achieved using bagasse as the only fuel source to satisfy industrial phase needs for electricity and steam. Mexican emissions were higher than those calculated for Brazil (27.5 kgCO(2e)/GJ(ethanol)) among all modalities. The Mexican modality with the highest ratio of renewable/fossil energy was also ethanol from sugarcane juice generating surplus electricity with 4.8 GJ(ethanol)/GJ(fossil). (c) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2088 / 2097
页数:10
相关论文
共 50 条
  • [41] Life-Cycle Analysis of Energy and Greenhouse Gas Emissions from Anaerobic Biodegradation of Municipal Solid Waste
    DiStefano, Thomas D.
    Belenky, Lucas G.
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2009, 135 (11) : 1097 - 1105
  • [42] Assessment of Building Greenhouse Gas Emissions Based on Hybrid Life-cycle Model
    Zeng Deheng
    Ren Hong
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC & MECHANICAL ENGINEERING AND INFORMATION TECHNOLOGY (EMEIT-2012), 2012, 23
  • [43] Pavement Resurfacing Policy for Minimization of Life-Cycle Costs and Greenhouse Gas Emissions
    Lidicker, Jeffrey
    Sathaye, Nakul
    Madanat, Samer
    Horvath, Arpad
    JOURNAL OF INFRASTRUCTURE SYSTEMS, 2013, 19 (02) : 129 - 137
  • [44] Life-cycle greenhouse gas emissions of alternative and conventional fuel vehicles in India
    Peshin, Tapas
    Azevedo, Ines M. L.
    Sengupta, Shayak
    2020 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2020,
  • [45] Evaluation of Polyethylene Mulching and Sugarcane Cultivar on Energy Inputs and Greenhouse Gas Emissions for Ethanol Production in a Temperate Climate
    Nakashima, Takahiro
    Ueno, Keiichiro
    Fujita, Eisuke
    Ishikawa, Shoko
    ENERGIES, 2020, 13 (17)
  • [46] Policy Implications of Uncertainty in Modeled Life-Cycle Greenhouse Gas Emissions of Biofuels
    Mullins, Kimberley A.
    Griffin, W. Michael
    Matthews, H. Scott
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (01) : 132 - 138
  • [47] Comparative life-cycle assessment of various harvesting strategies for biogas production from microalgae: Energy conversion characteristics and greenhouse gas emissions
    Wei, Chaoyang
    Xu, Yilin
    Xu, Long
    Liu, Jian
    Chen, Hao
    ENERGY CONVERSION AND MANAGEMENT, 2023, 289
  • [48] Life-cycle greenhouse gas emissions and net energy assessment of large-scale hydrogen production via electrolysis and solar PV
    Palmer, Graham
    Roberts, Ashley
    Hoadley, Andrew
    Dargaville, Roger
    Honnery, Damon
    ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (10) : 5113 - 5131
  • [49] Quantifying the uncertainties in life cycle greenhouse gas emissions for UK wheat ethanol
    Yan, Xiaoyu
    Boies, Adam M.
    ENVIRONMENTAL RESEARCH LETTERS, 2013, 8 (01):
  • [50] Reducing life cycle fossil energy and greenhouse gas emissions for Midwest swine production systems
    Tallaksen, Joel
    Johnston, Lee
    Sharpe, Kirsten
    Reese, Michael
    Buchanan, Eric
    JOURNAL OF CLEANER PRODUCTION, 2020, 246