Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico

被引:83
|
作者
Garcia, Carlos A. [1 ]
Fuentes, Alfredo [2 ,6 ]
Hennecke, Anna [3 ,4 ]
Riegelhaupt, Enrique [5 ]
Manzini, Fabio [1 ]
Masera, Omar [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Invest Energia, Temixco 62580, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Ctr Invest Ecosistemas, Morelia 58190, Michoacan, Mexico
[3] IFEU Inst Energy & Environm Res Heidelberg GmbH, D-69120 Heidelberg, Germany
[4] Univ Bonn, Ctr Dev Res ZEF, D-53113 Bonn, Germany
[5] Red Mexicana Bioenergia AC, Morelia 58341, Michoacan, Mexico
[6] Univ Nacl Autonoma Mexico, Fac Ingn, Mexico City 04510, DF, Mexico
关键词
Sugarcane ethanol; GHG emissions; Energy balance; Life cycle assessment; Biofuel; LAND-USE; BIODIESEL; FUEL;
D O I
10.1016/j.apenergy.2010.12.072
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The purpose of this work was to estimate GHG emissions and energy balances for the future expansion of sugarcane ethanol fuel production in Mexico with one current and four possible future modalities. We used the life cycle methodology that is recommended by the European Renewable Energy Directive (RED), which distinguished the following five system phases: direct Land Use Change (LUC); crop production; biomass transport to industry; industrial processing; and ethanol transport to admixture plants. Key variables affecting total GHG emissions and fossil energy used in ethanol production were LUC emissions, crop fertilization rates, the proportion of sugarcane areas that are burned to facilitate harvest, fossil fuels used in the industrial phase, and the method for allocation of emissions to co-products. The lower emissions and higher energy ratios that were observed in the present Brazilian case were mainly due to the lesser amount of fertilizers applied, also were due to the shorter distance of sugarcane transport, and to the smaller proportion of sugarcane areas that were burned to facilitate manual harvest. The resulting modality with the lowest emissions of equivalent carbon dioxide (CO2e) was ethanol produced from direct juice and generating surplus electricity with 36.8 kgCO(2e)/GJ(ethanol). This was achieved using bagasse as the only fuel source to satisfy industrial phase needs for electricity and steam. Mexican emissions were higher than those calculated for Brazil (27.5 kgCO(2e)/GJ(ethanol)) among all modalities. The Mexican modality with the highest ratio of renewable/fossil energy was also ethanol from sugarcane juice generating surplus electricity with 4.8 GJ(ethanol)/GJ(fossil). (c) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2088 / 2097
页数:10
相关论文
共 50 条
  • [31] The life-cycle assessment of greenhouse gas emissions and life-cycle costs of e-waste management in Thailand
    Mangmeechai, Aweewan
    SUSTAINABLE ENVIRONMENT RESEARCH, 2022, 32 (01)
  • [32] Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel
    Zhichao Wang
    Jennifer B. Dunn
    Jeongwoo Han
    Michael Q. Wang
    Biotechnology for Biofuels, 8
  • [33] Life Cycle Assessment of Technologies for Greenhouse Gas Emissions Reduction in Sugarcane Biorefineries
    Chagas, Mateus F.
    Cavalett, Otavio
    Klein, Bruno C.
    Maciel Filho, Rubens
    Bonomi, Antonio
    2ND INTERNATIONAL CONFERENCE ON BIOMASS (ICONBM 2016), 2016, 50 : 421 - 426
  • [34] Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel
    Wang, Zhichao
    Dunn, Jennifer B.
    Han, Jeongwoo
    Wang, Michael Q.
    BIOTECHNOLOGY FOR BIOFUELS, 2015, 8
  • [35] Life cycle greenhouse gas emissions in California rice production
    Brodt, Sonja
    Kendall, Alissa
    Moharnmadi, Yaser
    Arslan, Aslihan
    Yuan, Juhong
    Lee, In-Sung
    Linquist, Bruce
    FIELD CROPS RESEARCH, 2014, 169 : 89 - 98
  • [37] Life-cycle assessment of greenhouse gas emissions from dairy production in Eastern Canada: A case study
    Mc Geough, E. J.
    Little, S. M.
    Janzen, H. H.
    McAllister, T. A.
    McGinn, S. M.
    Beauchemin, K. A.
    JOURNAL OF DAIRY SCIENCE, 2012, 95 (09) : 5164 - 5175
  • [38] Towards Standardization of Life-Cycle Metrics for Biofuels: Greenhouse Gas Emissions Mitigation and Net Energy Yield
    Liska, Adam J.
    Cassman, Kenneth G.
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2008, 2 (03) : 187 - 203
  • [39] Comparing high and low residential density: Life-cycle analysis of energy use and greenhouse gas emissions
    Norman, J
    MacLean, HL
    Kennedy, CA
    JOURNAL OF URBAN PLANNING AND DEVELOPMENT, 2006, 132 (01) : 10 - 21
  • [40] Development and application of an electric vehicles life-cycle energy consumption and greenhouse gas emissions analysis model
    Peng, Tianduo
    Ou, Xunmin
    Yan, Xiaoyu
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2018, 131 : 699 - 708