Data-Driven Models for the Spatio-Temporal Interpolation of Satellite-Derived SST Fields

被引:30
|
作者
Fablet, Ronan [1 ,4 ]
Phi Huynh Viet [2 ,4 ]
Lguensat, Redouane [3 ,4 ]
机构
[1] IMT Atlantique, Signal & Commun Dept, F-292238 Brest, France
[2] IMT Atlantique, F-292238 Brest, France
[3] IMT Atlantique, Comp Vis, F-292238 Brest, France
[4] Lab STICC, F-292238 Brest, France
来源
关键词
Analog and exemplar-based models; data assimilation; multi-scale decomposition; ocean remtote sensing data; optimal interpolation; patch-based representation; SEA-SURFACE TEMPERATURE; IMAGE;
D O I
10.1109/TCI.2017.2749184
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Satellite-derived products are of key importance for the high-resolution monitoring of the ocean surface on a global scale. Due to the sensitivity of spaceborne sensors to the atmospheric conditions as well as the associated spatio-temporal sampling, ocean remote sensing data may be subject to high-missing data rates. The spatio-temporal interpolation of these data remains a key challenge to deliver L4 gridded products to endusers. Whereas operational products mostly rely on model-driven approaches, especially optimal interpolation based on Gaussian process priors, the availability of large-scale observation and simulation datasets calls for the development of novel data-driven models. This study investigates such models. We extend the recently introduced analog data assimilation to high-dimensional spatio-temporal fields using a multiscale patch-based decomposition. Using an observing system simulation experiment for sea surface temperature, we demonstrate the relevance of the proposed data-driven scheme for the real missing data patterns of the high-resolution infrared METOP sensor. It has resulted in a significant improvement w.r.t. state-of-the-art techniques in terms of interpolation error (about 50% of relative gain) and spectral characteristics for horizontal scales smaller than 100 km. We further discuss the key features and parameterizations of the proposed data-driven approach as well as its relevance with respect to classical interpolation techniques.
引用
收藏
页码:647 / 657
页数:11
相关论文
共 50 条
  • [41] Multitime-Scale Data-Driven Spatio-Temporal Forecast of Photovoltaic Generation
    Yang, Chen
    Thatte, Anupam A.
    Xie, Le
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2015, 6 (01) : 104 - 112
  • [42] Additive models with spatio-temporal data
    Xiangming Fang
    Kung-Sik Chan
    Environmental and Ecological Statistics, 2015, 22 : 61 - 86
  • [43] Data-Driven Spatio-Temporal Modeling Using the Integro-Difference Equation
    Dewar, Michael
    Scerri, Kenneth
    Kadirkamanathan, Visakan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (01) : 83 - 91
  • [44] Data-driven spatio-temporal analysis of wildfire risk to power systems operation
    Umunnakwe, Amarachi
    Parvania, Masood
    Nguyen, Hieu
    Horel, John D.
    Davis, Katherine R.
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2022, 16 (13) : 2531 - 2546
  • [45] On a Semiparametric Data-Driven Nonlinear Model with Penalized Spatio-Temporal Lag Interactions
    Al-Sulami, Dawlah
    Jiang, Zhenyu
    Lu, Zudi
    Zhu, Jun
    JOURNAL OF TIME SERIES ANALYSIS, 2019, 40 (03) : 327 - 342
  • [46] Spatio-temporal interpolation of rainfall data in western Mexico
    Martinez Vargas, Zaira Carolina
    Ivvan Valdez, S.
    Paredes-Tavares, Jorge
    2021 MEXICAN INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE (ENC 2021), 2021,
  • [47] Satellite-derived methane hotspot emission estimates using a fast data-driven method
    Buchwitz, Michael
    Schneising, Oliver
    Reuter, Maximilian
    Heymann, Jens
    Krautwurst, Sven
    Bovensmann, Heinrich
    Burrows, John P.
    Boesch, Hartmut
    Parker, Robert J.
    Somkuti, Peter
    Detmers, Rob G.
    Hasekamp, Otto P.
    Aben, Ilse
    Butz, Andre
    Frankenberg, Christian
    Turner, Alexander J.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (09) : 5751 - 5774
  • [48] Spatio-temporal data-driven detection of false data injection attacks in power distribution systems
    Musleh, Ahmed S.
    Chen, Guo
    Dong, Zhao Yang
    Wang, Chen
    Chen, Shiping
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 145
  • [49] Spatio-temporal patterns of satellite-derived grassland vegetation phenology from 1998 to 2012 in Inner Mongolia, China
    SHA Zongyao
    ZHONG Jialin
    BAI Yongfei
    TAN Xicheng
    Jonathan LI
    Journal of Arid Land, 2016, 8 (03) : 462 - 477
  • [50] Preliminary assessment of two spatio-temporal forecasting technics for hourly satellite-derived irradiance in a complex meteorological context
    Andre, Maina
    Perez, Richard
    Soubdhan, Ted
    Schlemmer, James
    Calif, Rudy
    Monjoly, Stephanie
    SOLAR ENERGY, 2019, 177 : 703 - 712