Dimension, reduction and spatiotemporal regression: Applications to neuroimaging

被引:0
|
作者
Shedden, K [1 ]
Li, KC
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[2] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
关键词
D O I
10.1109/MCISE.2003.1225858
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
One method for characterizing spatiotemporol variation in brain activity levels is based on the use of statistical dimension reduction. This reduction finds temporal components in data that best preserve the spatiotemporal regression structure. The method does this by suppressing more prominent waveforms that do not vary in a spatially predictable pattern.
引用
收藏
页码:30 / 36
页数:7
相关论文
共 50 条
  • [41] Connecting continuum regression with sufficient dimension reduction
    Chen Xin
    Zhu Li-Ping
    STATISTICS & PROBABILITY LETTERS, 2015, 98 : 44 - 49
  • [42] Projection expectile regression for sufficient dimension reduction
    Soale, Abdul-Nasah
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 180
  • [43] Dimension Reduction for Regression with Bottleneck Neural Networks
    Parviainen, Elina
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2010, 2010, 6283 : 37 - 44
  • [44] Dimension reduction for functional regression with a binary response
    Guochang Wang
    Beiting Liang
    Hansheng Wang
    Baoxue Zhang
    Baojian Xie
    Statistical Papers, 2021, 62 : 193 - 208
  • [45] Dimension reduction for functional regression with a binary response
    Wang, Guochang
    Liang, Beiting
    Wang, Hansheng
    Zhang, Baoxue
    Xie, Baojian
    STATISTICAL PAPERS, 2021, 62 (01) : 193 - 208
  • [46] Comment: Fisher lecture: Dimension reduction in regression
    Li, Bing
    STATISTICAL SCIENCE, 2007, 22 (01) : 32 - 35
  • [47] Note on response dimension reduction for multivariate regression
    Yoo, Jae Keun
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2019, 26 (05) : 519 - 526
  • [48] AN INTRODUCTION TO DIMENSION REDUCTION IN NONPARAMETRIC KERNEL REGRESSION
    Girard, S.
    Saracco, J.
    STATISTICS FOR ASTROPHYSICS: METHODS AND APPLICATIONS OF THE REGRESSION, 2015, 66 : 167 - +
  • [49] Overlapping sliced inverse regression for dimension reduction
    Zhang, Ning
    Yu, Zhou
    Wu, Qiang
    ANALYSIS AND APPLICATIONS, 2019, 17 (05) : 715 - 736