Note on response dimension reduction for multivariate regression

被引:1
|
作者
Yoo, Jae Keun [1 ]
机构
[1] Ewha Womans Univ, Dept Stat, 52 Ewhayeodae Gil, Seoul 03760, South Korea
基金
新加坡国家研究基金会;
关键词
conditional mean; multivariate regression; response dimension reduction; semi-parametric model; sufficient dimension reduction;
D O I
10.29220/CSAM.2019.26.5.519
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Response dimension reduction in a sufficient dimension reduction (SDR) context has been widely ignored until Yoo and Cook (Computational Statistics and Data Analysis, 53, 334-343, 2008) founded theories for it and developed an estimation approach. Recent research in SDR shows that a semi-parametric approach can outperform conventional non-parametric SDR methods. Yoo (Statistics: A Journal of Theoretical and Applied Statistics, 52, 409-425, 2018) developed a semi-parametric approach for response reduction in Yoo and Cook (2008) context, and Yoo (Journal of the Korean Statistical Society, 2019) completes the semi-parametric approach by proposing an unstructured method. This paper theoretically discusses and provides insightful remarks on three versions of semi-parametric approaches that can be useful for statistical practitioners. It is also possible to avoid numerical instability by presenting the results for an orthogonal transformation of the response variables.
引用
收藏
页码:519 / 526
页数:8
相关论文
共 50 条