A Finite Points Method Approach for Strain Localization Using the Gradient Plasticity Formulation

被引:1
|
作者
Perez Pozo, Luis [1 ]
Campos, Andy [2 ]
Lascano, Sheila [2 ]
Oller, Sergio [3 ]
Rodriguez-Ferran, Antonio [4 ]
机构
[1] Univ Tecn Federico Santa Maria, Adv Ctr Elect & Elect Engn, Basal Project FB0008, Dept Mech Engn, Valparaiso, Chile
[2] Univ Tecn Federico Santa Maria, Dept Mech Engn, Valparaiso, Chile
[3] Univ Politecn Cataluna, Int Ctr Numer Methods Engn CIMNE, ES-08034 Barcelona, Spain
[4] Univ Politecn Cataluna, Lab Calcul Numer LaCaN, ES-08034 Barcelona, Spain
关键词
ENHANCED DAMAGE; REGULARIZATION; MODEL; ELASTICITY; TRANSPORT; FRAMEWORK;
D O I
10.1155/2014/782079
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The softening elastoplastic models present an unsuitable behavior after reaching the yield strength: unbounded strain localization. Because of the material instability, which is reflected in the loss of ellipticity of the governing partial differential equations, the solution depends on the discretization. The present work proposes to solve this dependency using the meshless Finite Points Method. This meshfree spatial discretization technique allows enriching the governing equations using gradient's plasticity and introducing an internal length scale parameter at the material model in order to objectify the solution.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Evolution of Strain Gradient Formulation in Capturing Localization Phenomena in Granular Materials
    Al Hattamleh, O.
    Muhunthan, B.
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2022, 144 (01):
  • [42] Global Existence for Rate-Independent Gradient Plasticity at Finite Strain
    Andreas Mainik
    Alexander Mielke
    Journal of Nonlinear Science, 2009, 19 : 221 - 248
  • [43] Existence Theory for Finite-Strain Crystal Plasticity with Gradient Regularization
    Mielke, Alexander
    IUTAM SYMPOSIUM ON VARIATIONAL CONCEPTS WITH APPLICATIONS TO THE MECHANICS OF MATERIALS, 2010, 21 : 171 - 183
  • [44] Global Existence for Rate-Independent Gradient Plasticity at Finite Strain
    Mainik, Andreas
    Mielke, Alexander
    JOURNAL OF NONLINEAR SCIENCE, 2009, 19 (03) : 221 - 248
  • [45] On an implementation of the strain gradient plasticity with linear finite elements and reduced integration
    Park, Moon Shik
    Suh, Yeong Sung
    Song, Seung
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2012, 59 : 35 - 43
  • [46] Strain Gradient Finite Element Formulation of Flexoelectricity in Ferroelectric Material Based on Phase-Field Method
    Wang, Shuai
    Su, Hengchang
    Yi, Min
    Shao, Li-Hua
    ACTA MECHANICA SOLIDA SINICA, 2024, 37 (04) : 570 - 579
  • [47] Hydride-enhanced strain localization in zirconium alloy: A study by crystal plasticity finite element method
    Zan, X. D.
    Guo, X.
    Weng, G. J.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2024, 174
  • [48] THE CONSISTENT STRAIN METHOD IN FINITE-ELEMENT PLASTICITY
    BERNSPANG, L
    SAMUELSSON, A
    KUSSNER, M
    WRIGGERS, P
    COMPUTERS & STRUCTURES, 1995, 54 (01) : 27 - 33
  • [49] A Finite Element Formulation for Kirchhoff Plates in Strain-gradient Elasticity
    Beheshti, Alireza
    EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2019, 28 (03): : 123 - 146
  • [50] Localization properties of strain-softening gradient plasticity models. Part I: Strain-gradient theories
    Jirasek, Milan
    Rolshoven, Simon
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (11-12) : 2225 - 2238