A Finite Points Method Approach for Strain Localization Using the Gradient Plasticity Formulation

被引:1
|
作者
Perez Pozo, Luis [1 ]
Campos, Andy [2 ]
Lascano, Sheila [2 ]
Oller, Sergio [3 ]
Rodriguez-Ferran, Antonio [4 ]
机构
[1] Univ Tecn Federico Santa Maria, Adv Ctr Elect & Elect Engn, Basal Project FB0008, Dept Mech Engn, Valparaiso, Chile
[2] Univ Tecn Federico Santa Maria, Dept Mech Engn, Valparaiso, Chile
[3] Univ Politecn Cataluna, Int Ctr Numer Methods Engn CIMNE, ES-08034 Barcelona, Spain
[4] Univ Politecn Cataluna, Lab Calcul Numer LaCaN, ES-08034 Barcelona, Spain
关键词
ENHANCED DAMAGE; REGULARIZATION; MODEL; ELASTICITY; TRANSPORT; FRAMEWORK;
D O I
10.1155/2014/782079
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The softening elastoplastic models present an unsuitable behavior after reaching the yield strength: unbounded strain localization. Because of the material instability, which is reflected in the loss of ellipticity of the governing partial differential equations, the solution depends on the discretization. The present work proposes to solve this dependency using the meshless Finite Points Method. This meshfree spatial discretization technique allows enriching the governing equations using gradient's plasticity and introducing an internal length scale parameter at the material model in order to objectify the solution.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] ON THE ENERGETIC FORMULATION OF THE GURTIN AND ANAND MODEL IN STRAIN GRADIENT PLASTICITY
    Giacomini, Alessandro
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (02): : 527 - 552
  • [22] A discontinuous Galerkin formulation of a model of gradient plasticity at finite strains
    McBride, A. T.
    Reddy, B. D.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (21-26) : 1805 - 1820
  • [23] An Explicit Approach for Strain Gradient Plasticity Formulations
    Lee, Myoung-Gyu
    Han, Chung-Souk
    NUMIFORM 2010, VOLS 1 AND 2: DEDICATED TO PROFESSOR O. C. ZIENKIEWICZ (1921-2009), 2010, 1252 : 935 - +
  • [24] Deterministic approach on microstructurally small crack definition based on a crystalline plasticity finite element method incorporating strain localization
    Li, Wanjia
    Hamada, Shigeru
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2023, 46 (10) : 3699 - 3712
  • [25] Gradient dependent plasticity and the finite difference method
    Alehossein, H
    Korinets, A
    BIFURCATION AND LOCALISATION THEORY IN GEOMECHANICS, 2001, : 117 - 124
  • [26] Implicit gradient softening plasticity for the modeling of strain localization in soils
    Lu, Xilin
    Xue, Dawei
    Lim, Keng-Wit
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 364
  • [27] Primal interface debonding formulation for finite strain isotropic plasticity
    Aduloju, Sunday C.
    Truster, Timothy J.
    Mechanics Research Communications, 2021, 112
  • [28] Primal interface debonding formulation for finite strain isotropic plasticity
    Aduloju, Sunday C.
    Truster, Timothy J.
    MECHANICS RESEARCH COMMUNICATIONS, 2021, 112
  • [29] Simulating Indentation Experiment by Finite Element Method Using Mechanism-based Strain Gradient Plasticity and Quadrilateral Area Coordinate Method
    Zhang B.
    Chen Z.
    Chen, Zhanghua (chenzhanghua@ustb.edu.cn), 2017, Chinese Mechanical Engineering Society (53): : 74 - 83
  • [30] Formulation of strain gradient plasticity with interface energy in a consistent thermodynamic framework
    Voyiadjis, George Z.
    Deliktas, Babur
    INTERNATIONAL JOURNAL OF PLASTICITY, 2009, 25 (10) : 1997 - 2024