Bandwidth selection in kernel density estimation for interval-grouped data

被引:3
|
作者
Reyes, Miguel [1 ]
Francisco-Fernandez, Mario [2 ]
Cao, Ricardo [2 ]
机构
[1] Ctr Invest Matemat, Jalisco S-N, Guanajuato 36240, Gto, Mexico
[2] Univ A Coruna, Res Grp MODES, Dept Matemat, Fac Informat, Elvina 15071, A Coruna, Spain
关键词
Smoothing parameter selection; Plug-in bandwidth; Bootstrap bandwidth selector; Interval data; BOOTSTRAP CHOICE;
D O I
10.1007/s11749-017-0523-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
When interval-grouped data are available, the classical Parzen-Rosenblatt kernel density estimator has to be modified to get a computable and useful approach in this context. The new nonparametric grouped data estimator needs of the choice of a smoothing parameter. In this paper, two different bandwidth selectors for this estimator are analyzed. A plug-in bandwidth selector is proposed and its relative rate of convergence obtained. Additionally, a bootstrap algorithm to select the bandwidth in this framework is designed. This method is easy to implement and does not require Monte Carlo. Both proposals are compared through simulations in different scenarios. It is observed that when the sample size is medium or large and grouping is not heavy, both bandwidth selection methods have a similar and good performance. However, when the sample size is large and under heavy grouping scenarios, the bootstrap bandwidth selector leads to better results.
引用
收藏
页码:527 / 545
页数:19
相关论文
共 50 条
  • [31] A RELIABLE DATA-BASED BANDWIDTH SELECTION METHOD FOR KERNEL DENSITY-ESTIMATION
    SHEATHER, SJ
    JONES, MC
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1991, 53 (03): : 683 - 690
  • [32] Variable bandwidth kernel density estimation for censored data
    Suaray K.
    Journal of Statistical Theory and Practice, 2011, 5 (2) : 221 - 229
  • [33] Modified Fast Algorithm for the Bandwidth Selection of the Kernel Density Estimation
    A. V. Lapko
    V. A. Lapko
    Optoelectronics, Instrumentation and Data Processing, 2020, 56 : 566 - 572
  • [34] Optimal bandwidth selection for multivariate kernel deconvolution density estimation
    Youndje, Elie
    Wells, Martin T.
    TEST, 2008, 17 (01) : 138 - 162
  • [35] Information bound for bandwidth selection in kernel estimation of density derivatives
    Wu, TJ
    Lin, Y
    STATISTICA SINICA, 2000, 10 (02) : 457 - 473
  • [36] An adaptive method for bandwidth selection in circular kernel density estimation
    Stanislav Zámečník
    Ivana Horová
    Stanislav Katina
    Kamila Hasilová
    Computational Statistics, 2024, 39 : 1709 - 1728
  • [37] Optimal bandwidth selection for multivariate kernel deconvolution density estimation
    Élie Youndjé
    Martin T. Wells
    TEST, 2008, 17 : 138 - 162
  • [38] A Bayesian procedure for bandwidth selection in circular kernel density estimation
    Bedouhene, Kahina
    Zougab, Nabil
    MONTE CARLO METHODS AND APPLICATIONS, 2020, 26 (01): : 69 - 82
  • [39] Modified Fast Algorithm for the Bandwidth Selection of the Kernel Density Estimation
    Lapko, A., V
    Lapko, V. A.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2020, 56 (06) : 566 - 572
  • [40] An adaptive method for bandwidth selection in circular kernel density estimation
    Zamecnik, Stanislav
    Horova, Ivana
    Katina, Stanislav
    Hasilova, Kamila
    COMPUTATIONAL STATISTICS, 2024, 39 (04) : 1709 - 1728