Contrastive Learning of Coarse-Grained Force Fields

被引:13
|
作者
Ding, Xinqiang [1 ]
Zhang, Bin [1 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
FREE-ENERGY ESTIMATION; SOFTWARE PACKAGE; SIMULATION; MODEL; POTENTIALS; PREDICTION; SEPARATION; SOLVATION; PROTEINS;
D O I
10.1021/acs.jctc.2c00616
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Coarse-grained models have proven helpful for simulating complex systems over long time scales to provide molecular insights into various processes. Methodologies for systematic parametrization of the underlying energy function or force field that describes the interactions among different components of the system are of great interest for ensuring simulation accuracy. We present a new method, potential contrasting, to enable efficient learning of force fields that can accurately reproduce the conformational distribution produced with all-atom simulations. Potential contrasting generalizes the noise contrastive estimation method with umbrella sampling to better learn the complex energy landscape of molecular systems. When applied to the Trp-cage protein, we found that the technique produces force fields that thoroughly capture the thermodynamics of the folding process despite the use of only alpha-carbons in the coarse-grained model. We further showed that potential contrasting could be applied over large data sets that combine the conformational ensembles of many proteins to improve force field transferability. We anticipate potential contrasting as a powerful tool for building general-purpose coarse-grained force fields.
引用
收藏
页码:6334 / 6344
页数:11
相关论文
共 50 条
  • [41] Optimization of a Coarse-Grained Force Field for Biological Simulations
    Fogarty, Joseph
    Chiu, See-Wing
    Jakobsson, Eric
    Pandit, Sagar
    [J]. BIOPHYSICAL JOURNAL, 2013, 104 (02) : 506A - 506A
  • [42] Assessing the Quality of the OPEP Coarse-Grained Force Field
    Barducci, Alessandro
    Bonomi, Massimiliano
    Derreumaux, Philippe
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (06) : 1928 - 1934
  • [43] Statistics of coarse-grained cosmological fields in stochastic inflation
    Tada, Yuichiro
    Vennin, Vincent
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (02):
  • [44] An implementation of the Martini coarse-grained force field in OpenMM
    MacCallum, Justin L.
    Hu, Shangnong
    Lenz, Stefan
    Souza, Paulo C. T.
    Corradi, Valentina
    Tieleman, D. Peter
    [J]. BIOPHYSICAL JOURNAL, 2023, 122 (14) : 2864 - 2870
  • [45] Martini Coarse-Grained Force Field: Extension to RNA
    Uusitalo, Jaakko J.
    Ingolfsson, Helgi I.
    Marrink, Siewert J.
    Faustino, Ignacio
    [J]. BIOPHYSICAL JOURNAL, 2017, 113 (02) : 246 - 256
  • [46] Machine learning coarse-grained model for water
    Chan, Henry
    Cherukara, Mathew
    Narayanan, Badri
    Loeffler, Troy
    Benmore, Chris
    Gray, Stephen
    Sankaranarayanan, Subramanian
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [47] ?-Learning applied to coarse-grained homogeneous liquids
    Khot, Aditi
    Savoie, Brett M.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (05):
  • [48] PRIMO: A Transferable Coarse-Grained Force Field for Proteins
    Kar, Parimal
    Gopal, Srinivasa Murthy
    Cheng, Yi-Ming
    Predeus, Alexander
    Feig, Michael
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) : 3769 - 3788
  • [49] Martini 3 Coarse-Grained Force Field for Carbohydrates
    Grunewald, Fabian
    Punt, Mats H.
    Jefferys, Elizabeth E.
    Vainikka, Petteri A.
    Koenig, Melanie
    Virtanen, Valtteri
    Meyer, Travis A.
    Pezeshkian, Weria
    Gormley, Adam J.
    Karonen, Maarit
    Sansom, Mark S. P.
    Souza, Paulo C. T.
    Marrink, Siewert J.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (12) : 7555 - 7569
  • [50] MANIFOLD LEARNING FOR ACCELERATING COARSE-GRAINED OPTIMIZATION
    Pozharskiy, Dmitry
    Wichrowski, Noah J.
    Duncan, Andrew B.
    Pavliotis, Grigorios A.
    Kevrekidis, Ioannis G.
    [J]. JOURNAL OF COMPUTATIONAL DYNAMICS, 2020, 7 (02): : 511 - 536