Contrastive Learning of Coarse-Grained Force Fields

被引:13
|
作者
Ding, Xinqiang [1 ]
Zhang, Bin [1 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
FREE-ENERGY ESTIMATION; SOFTWARE PACKAGE; SIMULATION; MODEL; POTENTIALS; PREDICTION; SEPARATION; SOLVATION; PROTEINS;
D O I
10.1021/acs.jctc.2c00616
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Coarse-grained models have proven helpful for simulating complex systems over long time scales to provide molecular insights into various processes. Methodologies for systematic parametrization of the underlying energy function or force field that describes the interactions among different components of the system are of great interest for ensuring simulation accuracy. We present a new method, potential contrasting, to enable efficient learning of force fields that can accurately reproduce the conformational distribution produced with all-atom simulations. Potential contrasting generalizes the noise contrastive estimation method with umbrella sampling to better learn the complex energy landscape of molecular systems. When applied to the Trp-cage protein, we found that the technique produces force fields that thoroughly capture the thermodynamics of the folding process despite the use of only alpha-carbons in the coarse-grained model. We further showed that potential contrasting could be applied over large data sets that combine the conformational ensembles of many proteins to improve force field transferability. We anticipate potential contrasting as a powerful tool for building general-purpose coarse-grained force fields.
引用
收藏
页码:6334 / 6344
页数:11
相关论文
共 50 条
  • [21] Two for One: Diffusion Models and Force Fields for Coarse-Grained Molecular Dynamics
    Arts, Marloes
    Satorras, Victor Garcia
    Huang, Chin-Wei
    Zuegner, Daniel
    Federici, Marco
    Clementi, Cecilia
    Noe, Frank
    Pinsler, Robert
    van den Berg, Rianne
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (18) : 6151 - 6159
  • [22] Machine learned coarse-grained protein force-fields: Are we there yet?
    Durumeric, Aleksander E. P.
    Charron, Nicholas E.
    Templeton, Clark
    Musil, Felix
    Bonneau, Klara
    Pasos-Trejo, Aldo S.
    Chen, Yaoyi
    Kelkar, Atharva
    Noe, Frank
    Clementi, Cecilia
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 79
  • [23] Novel coarse-grained force field for carbohydrates
    Rusu, Victor H.
    Baron, Riccardo
    Lins, Roberto D.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [24] Coarse-grained force field for ionic surfactants
    Shinoda, Wataru
    DeVane, Russell
    Klein, Michael L.
    [J]. SOFT MATTER, 2011, 7 (13) : 6178 - 6186
  • [25] Coarse-grained privileged learning for classification
    Fu, Saiji
    Wang, Xiaoxiao
    Tian, Yingjie
    Dong, Tianyi
    Tang, Jingjing
    Li, Jicai
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (06)
  • [26] Martini Coarse-Grained Force Field for RNA
    Uusitalo, Jaakko J.
    Ingolfsson, Helgi I.
    Marrink, Siewert J.
    Faustino, Ignacio
    [J]. BIOPHYSICAL JOURNAL, 2018, 114 (03) : 437A - 437A
  • [27] Pairwise energies for polypeptide coarse-grained models derived from atomic force fields
    Betancourt, Marcos R.
    Omovie, Sheyore J.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (19):
  • [28] First-Principles Parametrization of Polarizable Coarse-Grained Force Fields for Ionic Liquids
    Uhlig, Frank
    Zeman, Johannes
    Smiatek, Jens
    Holm, Christian
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (03) : 1471 - 1486
  • [29] COMP 35-All-atom and coarse-grained force fields for molecular mechanics
    Arnutova, Yelena A.
    Vila, Jorge A.
    Liwo, Adam
    Oldziej, Stanislaw
    Czaplewski, Cezary
    Kozlowska, Urszula
    Scheraga, Harold A.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 236
  • [30] Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites
    Rzepiela, Andrzej J.
    Louhivuori, Martti
    Peter, Christine
    Marrink, Siewert J.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (22) : 10437 - 10448