SOLVING A STRUCTURED QUADRATIC EIGENVALUE PROBLEM BY A STRUCTURE-PRESERVING DOUBLING ALGORITHM

被引:20
|
作者
Guo, Chun-Hua [1 ]
Lin, Wen-Wei [2 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[2] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 300, Taiwan
基金
加拿大自然科学与工程研究理事会;
关键词
palindromic quadratic eigenvalue problem; nonlinear matrix equation; stabilizing solution; structure-preserving; doubling algorithm; MATRIX EQUATION; CONVERGENCE ANALYSIS; NUMERICAL-SOLUTION; FAST TRAINS; POLYNOMIALS; VIBRATION;
D O I
10.1137/090763196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In studying the vibration of fast trains, we encounter a palindromic quadratic eigen-value problem (QEP) (lambda(2)A(T)+lambda Q+A)z = 0, where A, Q is an element of C(nxn) and Q(T) = Q. Moreover, the matrix Q is block tridiagonal and block Toeplitz, and the matrix A has only one nonzero block in the upper-right corner. So most of the eigenvalues of the QEP are zero or infinity. In a linearization approach, one typically starts with deflating these known eigenvalues for the sake of efficiency. However, this initial deflation process involves the inverses of two potentially ill-conditioned matrices. As a result, large error might be introduced into the data for the reduced problem. In this paper we propose using the solvent approach directly on the original QEP, without any deflation process. We apply a structure-preserving doubling algorithm to compute the stabilizing solution of the matrix equation X + A(T)X(-1)A = Q, whose existence is guaranteed by a result on the Wiener-Hopf factorization of rational matrix functions associated with semi-infinite block Toeplitz matrices and a generalization of Bendixson's theorem to bounded linear operators on Hilbert spaces. The doubling algorithm is shown to be well defined and quadratically convergent. The complexity of the doubling algorithm is drastically reduced by using the Sherman-Morrison-Woodbury formula and the special structures of the problem. Once the stabilizing solution is obtained, all nonzero finite eigenvalues of the QEP can be found efficiently and with the automatic reciprocal relationship, while the known eigenvalues at zero or infinity remain intact.
引用
下载
收藏
页码:2784 / 2801
页数:18
相关论文
共 50 条
  • [41] A new structure-preserving method for dual quaternion Hermitian eigenvalue problems
    Ding, Wenxv
    Li, Ying
    Wei, Musheng
    Applied Mathematics Letters, 2025, 163
  • [42] A Structure-Preserving Method for Positive Realness Problem in Control
    Chu, Delin
    Li, Dongmei
    VIETNAM JOURNAL OF MATHEMATICS, 2020, 48 (04) : 741 - 767
  • [43] A Structure-Preserving Method for Positive Realness Problem in Control
    Delin Chu
    Dongmei Li
    Vietnam Journal of Mathematics, 2020, 48 : 741 - 767
  • [44] A new real structure-preserving quaternion QR algorithm
    Jia, Zhigang
    Wei, Musheng
    Zhao, Mei-Xiang
    Chen, Yong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 343 : 26 - 48
  • [45] DOUBLING ALGORITHM FOR THE DISCRETIZED BETHE-SALPETER EIGENVALUE PROBLEM
    Guo, Zhen-Chen
    Chu, Eric King-Wah
    Lin, Wen-Wei
    MATHEMATICS OF COMPUTATION, 2019, 88 (319) : 2325 - 2350
  • [46] An efficient real structure-preserving algorithm for the quaternion weighted least squares problem with equality constraint
    Fengxia Zhang
    Ying Li
    Journal of Applied Mathematics and Computing, 2023, 69 : 4287 - 4306
  • [47] Structure-preserving ΓQR and Γ-Lanczos algorithms for Bethe-Salpeter eigenvalue problems
    Guo, Zhen-Chen
    Li, Tiexiang
    Zhou, Ying-Ying
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 341 : 12 - 30
  • [48] An efficient real structure-preserving algorithm for the quaternion weighted least squares problem with equality constraint
    Zhang, Fengxia
    Li, Ying
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (06) : 4287 - 4306
  • [49] Hybrid Algorithm for Solving the Quadratic Assignment Problem
    Essaid Riffi, Mohammed
    Sayoti, Fatima
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2019, 5 (04): : 68 - 74