SOLVING A STRUCTURED QUADRATIC EIGENVALUE PROBLEM BY A STRUCTURE-PRESERVING DOUBLING ALGORITHM

被引:20
|
作者
Guo, Chun-Hua [1 ]
Lin, Wen-Wei [2 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[2] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 300, Taiwan
基金
加拿大自然科学与工程研究理事会;
关键词
palindromic quadratic eigenvalue problem; nonlinear matrix equation; stabilizing solution; structure-preserving; doubling algorithm; MATRIX EQUATION; CONVERGENCE ANALYSIS; NUMERICAL-SOLUTION; FAST TRAINS; POLYNOMIALS; VIBRATION;
D O I
10.1137/090763196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In studying the vibration of fast trains, we encounter a palindromic quadratic eigen-value problem (QEP) (lambda(2)A(T)+lambda Q+A)z = 0, where A, Q is an element of C(nxn) and Q(T) = Q. Moreover, the matrix Q is block tridiagonal and block Toeplitz, and the matrix A has only one nonzero block in the upper-right corner. So most of the eigenvalues of the QEP are zero or infinity. In a linearization approach, one typically starts with deflating these known eigenvalues for the sake of efficiency. However, this initial deflation process involves the inverses of two potentially ill-conditioned matrices. As a result, large error might be introduced into the data for the reduced problem. In this paper we propose using the solvent approach directly on the original QEP, without any deflation process. We apply a structure-preserving doubling algorithm to compute the stabilizing solution of the matrix equation X + A(T)X(-1)A = Q, whose existence is guaranteed by a result on the Wiener-Hopf factorization of rational matrix functions associated with semi-infinite block Toeplitz matrices and a generalization of Bendixson's theorem to bounded linear operators on Hilbert spaces. The doubling algorithm is shown to be well defined and quadratically convergent. The complexity of the doubling algorithm is drastically reduced by using the Sherman-Morrison-Woodbury formula and the special structures of the problem. Once the stabilizing solution is obtained, all nonzero finite eigenvalues of the QEP can be found efficiently and with the automatic reciprocal relationship, while the known eigenvalues at zero or infinity remain intact.
引用
下载
收藏
页码:2784 / 2801
页数:18
相关论文
共 50 条
  • [31] An effective real structure-preserving algorithm for the quaternion indefinite least squares problem
    Meng, Zixiang
    Zhou, Zhihan
    Li, Ying
    Zhang, Fengxia
    NUMERICAL ALGORITHMS, 2024,
  • [32] Real structure-preserving algorithm for quaternion equality constrained least squares problem
    Li, Ying
    Zhang, Yanzhen
    Wei, Musheng
    Zhao, Hong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4558 - 4566
  • [33] Structure-Preserving Hashing for Tree-Structured Data
    Xu, Zhi
    Niu, Lushuai
    Ji, Jianqiu
    Li, Qinlin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (08) : 2045 - 2053
  • [34] Solving the Quadratic Eigenvalue Complementarity Problem by DC Programming
    Niu, Yi-Shuai
    Judice, Joaquim
    Hoai An Le Thi
    Tao Pham Dinh
    MODELLING, COMPUTATION AND OPTIMIZATION IN INFORMATION SYSTEMS AND MANAGEMENT SCIENCES - MCO 2015, PT 1, 2015, 359 : 203 - 214
  • [35] A structure-preserving algorithm for the quaternion Cholesky decomposition
    Wang, Minghui
    Ma, Wenhao
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 223 : 354 - 361
  • [36] Structure-preserving dynamic texture generation algorithm
    Wu, Ling-chen
    Ye, Dong-yi
    Chen, Zhao-jiong
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (14): : 8299 - 8318
  • [37] Structure-preserving dynamic texture generation algorithm
    Ling-chen Wu
    Dong-yi Ye
    Zhao-jiong Chen
    Neural Computing and Applications, 2021, 33 : 8299 - 8318
  • [38] A Local Algorithm for Structure-Preserving Graph Cut
    Zhou, Dawei
    Zhang, Si
    Yildirim, Mehmet Yigit
    Alcorn, Scott
    Tong, Hanghang
    Davulcu, Hasan
    He, Jingrui
    KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 655 - 664
  • [39] On normal and structured matrices under unitary structure-preserving transformations
    Kovac, Erna Begovic
    Fassbender, Heike
    Saltenberger, Philip
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 608 : 322 - 342
  • [40] A Pade approximate linearization algorithm for solving the quadratic eigenvalue problem with low-rank damping
    Lu, Ding
    Huang, Xin
    Bai, Zhaojun
    Su, Yangfeng
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 103 (11) : 840 - 858