Low-velocity impact response of fiber-metal laminates consisting of different standard GLARE grades

被引:11
|
作者
Bikakis, George S. E. [1 ]
Karaiskos, Evangelos [1 ]
Sideridis, Emilios P. [1 ]
机构
[1] Natl Tech Univ Athens, Strength Mat Lab, Athens, Greece
关键词
GLARE; fiber-metal laminate; low-velocity impact; circular plate; impact load; impact energy; LATERAL INDENTATION; CYLINDRICAL-SHELLS; STACKING-SEQUENCE; DYNAMIC-RESPONSE; PLATES; DAMAGE; RESISTANCE; BEHAVIORS; THICKNESS; FATIGUE;
D O I
10.1177/0731684416633770
中图分类号
TB33 [复合材料];
学科分类号
摘要
This article deals with the dynamic response of thin circular clamped GLARE (GLAss REinforced) fiber-metal laminates subjected to low-velocity impact by a lateral hemispherical impactor, striking at the center with constant kinetic energy. The laminates have equal total thickness and consist of GLARE 2A-3/2-0.4, GLARE 2A-4/3-0.238, GLARE 3-3/2-0.4, GLARE 4-3/2-0.317, and GLARE 5-3/2-0.233 standard grades. Three different plate diameters are considered for each GLARE grade. Their dynamic response is predicted by solving previously published differential equations of motion corresponding to a spring-mass modeling of the impact phenomenon. The obtained results are analyzed and compared in order to understand and evaluate the performance of the examined material grades along with the effect of different plate radius. With reference to the radius variation, it is found that it affects substantially the overall impact behavior of a GLARE plate. As far as the examined material grades are concerned, similarities and differences related with their impact behavior are recorded and a comparative evaluation is implemented. Characteristic variables associated with the low-velocity impact response of fiber-metal laminates are discussed and pertinent design recommendations are proposed.
引用
收藏
页码:1029 / 1040
页数:12
相关论文
共 50 条
  • [31] Effect of metal type on the energy absorption of fiber metal laminates under low-velocity impact
    Chen, Yong
    Chen, Liming
    Huang, Qiong
    Zhang, Zhigang
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2022, 29 (25) : 4582 - 4598
  • [32] Low-velocity impact response of composite laminates with a delamination
    Sekine, H
    Hu, N
    Fukunaga, H
    Natsume, T
    MECHANICS OF COMPOSITE MATERIALS AND STRUCTURES, 1998, 5 (03): : 257 - 278
  • [33] The effect of impact energy division over repeated low-velocity impact on fiber metal laminates
    Kashani, M. Haghi
    Sadighi, M.
    Lalehpour, A.
    Alderliesten, R. C.
    JOURNAL OF COMPOSITE MATERIALS, 2015, 49 (06) : 635 - 646
  • [34] Response of GLARE fiber-metal laminates under radial in-plane preloading and lateral indentation
    Bikakis, George S. E.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2015, 34 (17) : 1392 - 1402
  • [35] The Comparison of Low-Velocity Impact Resistance of Aluminum/Carbon and Glass Fiber Metal Laminates
    Bienias, Jaroslaw
    Surowska, Barbara
    Jakubczak, Patryk
    POLYMER COMPOSITES, 2016, 37 (04) : 1056 - 1063
  • [36] Loading-Unloading Response of Circular GLARE Fiber-Metal Laminates under Lateral Indentation
    Tsamasphyros, George J.
    Bikakis, George S.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2010 (ICCMSE-2010), 2015, 1642 : 547 - 550
  • [37] Study of Low-Velocity Impact Behavior of Hybrid Fiber-Reinforced Metal Laminates
    Fang, Yuting
    Sheng, Dongfa
    Lin, Zhongzhao
    Fei, Peng
    POLYMERS, 2024, 16 (02)
  • [38] A practical analytical model for predicting the low-velocity impact response of 3D-fiber metal laminates
    Asaee, Zohreh
    Taheri, Farid
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2020, 27 (01) : 20 - 33
  • [39] Low-velocity impact (LVI) and post-impact fatigue properties of GLARE laminates with holes
    Chen, Yajun
    Yang, Jinchuan
    Peng, Jianshu
    Ji, Chunming
    Wang, Bing
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 167
  • [40] Low-velocity impact response and damage simulation of fiber/magnesium alloy composite laminates
    Zhou X.
    Li K.
    Chen C.
    Chen X.
    2018, Chinese Vibration Engineering Society (37): : 1 - 9