A practical analytical model for predicting the low-velocity impact response of 3D-fiber metal laminates

被引:14
|
作者
Asaee, Zohreh [1 ]
Taheri, Farid [1 ]
机构
[1] Dalhousie Univ, Dept Mech Engn, Adv Composite & Mech Lab, Halifax, NS, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
3D fiber metal laminates; low-velocity impact; analytical solution; finite element solution; contact law; energy balance model; FIBER; BEHAVIOR; RESISTANCE; TENSILE;
D O I
10.1080/15376494.2018.1472328
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The main objective of present study is to develop a practical analytical model for predicting the static (indentation) and low-velocity impact responses of 3D fiber metal laminates (3DFML). An energy balance approach is used, by which the impact induced energy into various configurations of 3DFML is assumed to dissipate through shear, bending and indentation contact mechanisms. The indentation contact is formulated using the Hertz law. The contact parameters are calculated for various configurations of 3DFML. The variation in the contact parameters as a function of 3DFML configuration and the indentation area is investigated. The developed analytical model is generalized and modified based on the configurations of 3DFMLs and impactor's geometry. The integrity of the proposed analytical model is verified by comparison of its results against results obtained through experiments and numerical simulations. The numerical simulations are performed using commercial finite element software ABAQUS/Explicit. Comparison of the results indicates that the proposed model can reliably predict the maximum impact force and deformation of the 3DFMLs, up to the stage at which a crack develops on the 3DFML.
引用
收藏
页码:20 / 33
页数:14
相关论文
共 50 条
  • [1] The low-velocity impact response of fiber-metal laminates
    Fan, J.
    Cantwell, W. J.
    Guan, Z. W.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2011, 30 (01) : 26 - 35
  • [2] Low-velocity impact behavior of fiber metal laminates
    Tsartsaris, N.
    Meo, M.
    Dolce, F.
    Polimeno, U.
    Guida, M.
    Marulo, F.
    JOURNAL OF COMPOSITE MATERIALS, 2011, 45 (07) : 803 - 814
  • [3] Low-velocity impact response of fiber-metal laminates - A theoretical approach
    Zhu, S.
    Chai, G. B.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2014, 228 (04) : 301 - 311
  • [4] Oblique Low-Velocity Impact on Fiber-Metal Laminates
    Heydari-Meybodi, M.
    Mohammadkhani, H.
    Bagheri, M. R.
    APPLIED COMPOSITE MATERIALS, 2017, 24 (03) : 611 - 623
  • [5] Oblique Low-Velocity Impact on Fiber-Metal Laminates
    M. Heydari-Meybodi
    H. Mohammadkhani
    M. R. Bagheri
    Applied Composite Materials, 2017, 24 : 611 - 623
  • [6] Low-Velocity Impact Response of Glass-Galvanized Iron Fiber Metal Laminates
    Jumahat, Aidah
    Sapiai, Napisah
    Mubin, Mohamad Nasron
    INTERNATIONAL TRANSACTION JOURNAL OF ENGINEERING MANAGEMENT & APPLIED SCIENCES & TECHNOLOGIES, 2021, 12 (09):
  • [7] Dynamic response of fiber-metal laminates (FMLs) subjected to low-velocity impact
    Payeganeh, G. H.
    Ghasemi, F. Ashenai
    Malekzadeh, K.
    THIN-WALLED STRUCTURES, 2010, 48 (01) : 62 - 70
  • [8] Low-velocity impact response of fiber-metal laminates consisting of different standard GLARE grades
    Bikakis, George S. E.
    Karaiskos, Evangelos
    Sideridis, Emilios P.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2016, 35 (13) : 1029 - 1040
  • [9] Computational model for predicting the low-velocity impact resistance and tolerance of composite laminates
    Alabbad, Maitham
    Vel, Senthil S.
    Lopez-Anido, Roberto A.
    COMPOSITES PART B-ENGINEERING, 2022, 244
  • [10] Effect of metal type on the energy absorption of fiber metal laminates under low-velocity impact
    Chen, Yong
    Chen, Liming
    Huang, Qiong
    Zhang, Zhigang
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2022, 29 (25) : 4582 - 4598