Natural Language Explanations of Classifier Behavior

被引:0
|
作者
de Aquino, Rodrigo Monteiro [1 ]
Cozman, Fabio Gagliardi [1 ]
机构
[1] Univ Sao Paulo, Escola Politecn, Sao Paulo, SP, Brazil
关键词
machine learning; interpretability; transparency;
D O I
10.1109/AIKE.2019.00048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tools that enhance interpretability of classifiers tend to focus on the knowledgeable data scientist. Here we propose techniques that generate textual explanations of the internal behavior of a given classifier, aiming at less technically proficient users of machine learning resources. Our approach has been positively evaluated by a group of users who received its textual output.
引用
收藏
页码:239 / 242
页数:4
相关论文
共 50 条
  • [41] Zero-Shot Classification by Logical Reasoning on Natural Language Explanations
    Han, Chi
    Pei, Hengzhi
    Du, Xinya
    Ji, Heng
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 8967 - 8981
  • [42] Supervising Model Attention with Human Explanations for Robust Natural Language Inference
    Stacey, Joe
    Belinkov, Yonatan
    Rei, Marek
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 11349 - 11357
  • [43] Rationalization: A Neural Machine Translation Approach to Generating Natural Language Explanations
    Ehsan, Upol
    Harrison, Brent
    Chan, Larry
    Riedl, Mark O.
    PROCEEDINGS OF THE 2018 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY (AIES'18), 2018, : 81 - 87
  • [44] e-ViL: A Dataset and Benchmark for Natural Language Explanations in Vision-Language Tasks
    Kayser, Maxime
    Camburu, Oana-Maria
    Salewski, Leonard
    Emde, Cornelius
    Do, Virginie
    Akata, Zeynep
    Lukasiewicz, Thomas
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 1224 - 1234
  • [45] NLX-GPT: A Model for Natural Language Explanations in Vision and Vision-Language Tasks
    Sammani, Fawaz
    Mukherjee, Tanmoy
    Deligiannis, Nikos
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8312 - 8322
  • [46] Toward Generating Natural-Language Explanations of Modal-Logic Proofs
    Giancola, Mike
    Bringsjord, Selmer
    Govindarajulu, Naveen Sundar
    ARTIFICIAL GENERAL INTELLIGENCE, AGI 2022, 2023, 13539 : 220 - 230
  • [47] Semi-automated classifier adaptation for natural language call routing
    Witt, Silke M.
    12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 1352 - 1355
  • [48] Crime as natural event? Biological explanations in German-language criminology textbooks
    Fuchs, Walter
    KRIMINOLOGISCHES JOURNAL, 2013, 45 (01): : 25 - 43
  • [49] Shortcut Learning Explanations for Deep Natural Language Processing: A Survey on Dataset Biases
    Dogra, Varun
    Verma, Sahil
    Kavita
    Wozniak, Marcin
    Shafi, Jana
    Ijaz, Muhammad Fazal
    IEEE ACCESS, 2024, 12 : 26183 - 26195
  • [50] TextFocus: Assessing the Faithfulness of Feature Attribution Methods Explanations in Natural Language Processing
    Mariotti, Ettore
    Arias-Duart, Anna
    Cafagna, Michele
    Gatt, Albert
    Garcia-Gasulla, Dario
    Alonso-Moral, Jose Maria
    IEEE ACCESS, 2024, 12 : 138870 - 138880