Natural Language Explanations of Classifier Behavior

被引:0
|
作者
de Aquino, Rodrigo Monteiro [1 ]
Cozman, Fabio Gagliardi [1 ]
机构
[1] Univ Sao Paulo, Escola Politecn, Sao Paulo, SP, Brazil
关键词
machine learning; interpretability; transparency;
D O I
10.1109/AIKE.2019.00048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tools that enhance interpretability of classifiers tend to focus on the knowledgeable data scientist. Here we propose techniques that generate textual explanations of the internal behavior of a given classifier, aiming at less technically proficient users of machine learning resources. Our approach has been positively evaluated by a group of users who received its textual output.
引用
收藏
页码:239 / 242
页数:4
相关论文
共 50 条
  • [21] Addressing Stability in Classifier Explanations
    Samiei, Siavash
    Baratalipour, Nasrin
    Yadav, Pranjul
    Roy, Amitabha
    He, Dake
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 1920 - 1927
  • [22] Tourism Recommender System Based on Natural Language Classifier
    Tenemaza, Maritzol
    Limaico, Jose
    Lujan-Mora, Sergio
    ADVANCES IN ARTIFICIAL INTELLIGENCE, SOFTWARE AND SYSTEMS ENGINEERING (AHFE 2021), 2021, 271 : 230 - 235
  • [23] SQLUCID: Grounding Natural Language Database Qeries with Interactive Explanations
    Tian, Yuan
    Kummerfeld, Jonathan K.
    Li, Toby Jia-Jun
    Zhang, Tianyi
    PROCEEDINGS OF THE 37TH ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY, USIT 2024, 2024,
  • [24] CLUES: A Benchmark for Learning Classifiers using Natural Language Explanations
    Menon, Rakesh R.
    Ghosh, Sayan
    Srivastava, Shashank
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 6523 - 6546
  • [25] Generating Token-Level Explanations for Natural Language Inference
    Thorne, James
    Vlachos, Andreas
    Christodoulopoulos, Christos
    Mittal, Arpit
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 963 - 969
  • [26] Towards Interpretable Natural Language Understanding with Explanations as Latent Variables
    Zhou, Wangchunshu
    Hu, Jinyi
    Zhang, Hanlin
    Liang, Xiaodan
    Sun, Maosong
    Xiong, Chenyan
    Tang, Jian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [27] Exploring Automatically Perturbed Natural Language Explanations in Relation Extraction
    Cui, Wanyun
    Chen, Xingran
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 3454 - 3467
  • [28] Crowd-Based Personalized Natural Language Explanations for Recommendations
    Chang, Shuo
    Harper, F. Maxwell
    Terveen, Loren
    PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), 2016, : 175 - 182
  • [29] INTERACTION: A Generative XAI Framework for Natural Language Inference Explanations
    Yu, Jialin
    Cristea, Alexandra, I
    Harit, Anoushka
    Sun, Zhongtian
    Aduragba, Olanrewaju Tahir
    Shi, Lei
    Al Moubayed, Noura
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [30] GazeXplain: Learning to Predict Natural Language Explanations of Visual Scanpaths
    Chen, Xianyu
    Jiang, Ming
    Zhao, Qi
    COMPUTER VISION - ECCV 2024, PT VIII, 2025, 15066 : 314 - 333