Natural Language Explanations of Classifier Behavior

被引:0
|
作者
de Aquino, Rodrigo Monteiro [1 ]
Cozman, Fabio Gagliardi [1 ]
机构
[1] Univ Sao Paulo, Escola Politecn, Sao Paulo, SP, Brazil
关键词
machine learning; interpretability; transparency;
D O I
10.1109/AIKE.2019.00048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tools that enhance interpretability of classifiers tend to focus on the knowledgeable data scientist. Here we propose techniques that generate textual explanations of the internal behavior of a given classifier, aiming at less technically proficient users of machine learning resources. Our approach has been positively evaluated by a group of users who received its textual output.
引用
收藏
页码:239 / 242
页数:4
相关论文
共 50 条
  • [1] Recommendation with Dynamic Natural Language Explanations
    Li, Xi
    Zhang, Jingsen
    Bo, Xiaohe
    Wang, Lei
    Chen, Xu
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [2] Faithfulness Tests for Natural Language Explanations
    Atanasova, Pepa
    Camburu, Oana-Maria
    Lioma, Christina
    Lukasiewicz, Thomas
    Simonsen, Jakob Grue
    Augenstein, Isabelle
    61ST CONFERENCE OF THE THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 2, 2023, : 283 - 294
  • [3] A survey on XAI and natural language explanations
    Cambria, Erik
    Malandri, Lorenzo
    Mercorio, Fabio
    Mezzanzanica, Mario
    Nobani, Navid
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (01)
  • [4] Training Classifiers with Natural Language Explanations
    Hancock, Braden
    Varma, Paroma
    Wang, Stephanie
    Bringmann, Martin
    Liang, Percy
    Re, Christopher
    PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, 2018, : 1884 - 1895
  • [5] e-SNLI: Natural Language Inference with Natural Language Explanations
    Camburu, Oana-Maria
    Rocktaschel, Tim
    Lukasiewicz, Thomas
    Blunsom, Phil
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [6] Automatic Generation of Natural Language Explanations
    Costa, Felipe
    Ouyang, Sixun
    Dolog, Peter
    Lawlor, Aonghus
    COMPANION OF THE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES (IUI'18), 2018,
  • [7] Modeling students' natural language explanations
    Corbett, Albert
    Wagner, Angela
    Lesgold, Sharon
    Ulrich, Harry
    Stevens, Scott
    USER MODELING 2007, PROCEEDINGS, 2007, 4511 : 117 - +
  • [8] Counterfactual Explanations for Natural Language Interfaces
    Tolkachev, George
    Mell, Stephen
    Zdancewic, Steve
    Bastani, Osbert
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022): (SHORT PAPERS), VOL 2, 2022, : 113 - 118
  • [9] Natural Language Explanations for Query Results
    Deutch, Daniel
    Frost, Nave
    Gilad, Amir
    SIGMOD RECORD, 2018, 47 (01) : 42 - 49
  • [10] Quantifying Uncertainty in Natural Language Explanations of Large Language Models
    Tanneru, Sree Harsha
    Agarwal, Chirag
    Lakkaraju, Himabindu
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238