Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO2

被引:327
|
作者
Yin, Wan-Jian [1 ]
Tang, Houwen [1 ]
Wei, Su-Huai [1 ]
Al-Jassim, Mowafak M. [1 ]
Turner, John [1 ]
Yan, Yanfa [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
TOTAL-ENERGY CALCULATIONS;
D O I
10.1103/PhysRevB.82.045106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Here, we propose general strategies for the rational design of semiconductors to simultaneously meet all of the requirements for a high-efficiency, solar-driven photoelectrochemical (PEC) water-splitting device. As a case study, we apply our strategies for engineering the popular semiconductor, anatase TiO2. Previous attempts to modify known semiconductors such as TiO2 have often focused on a particular individual criterion such as band gap, neglecting the possible detrimental consequence to other important criteria. Density-functional theory calculations reveal that with appropriate donor-acceptor coincorporation alloys with anatase TiO2 hold great potential to satisfy all of the criteria for a viable PEC device. We predict that (Mo, 2N) and (W, 2N) are the best donor-acceptor combinations in the low-alloy concentration regime whereas (Nb, N) and (Ta, N) are the best choice of donor-acceptor pairs in the high-alloy concentration regime.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [1] Band Structure Tuning of TiO2 for Enhanced Photoelectrochemical Water Splitting
    Wang, Jiajun
    Sun, Haifeng
    Huang, Jing
    Li, Qunxiang
    Yang, Jinlong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (14): : 7451 - 7457
  • [2] Energy Band Engineering by CdTe/Si Codoped TiO2 Nanoarrays for Enhanced Photoelectrochemical Water Splitting
    Saeidi, Sahar
    Rezaei, Behzad
    Ensafi, Ali A.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (03) : 2795 - 2804
  • [3] Band structure engineering of TiO2 nanowires by n-p codoping for enhanced visible-light photoelectrochemical water-splitting
    Zhang, Daoyu
    Yang, Minnan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (42) : 18523 - 18529
  • [4] Band structure design of semiconductors for enhanced photocatalytic activity: The case of TiO2
    Hui Yan
    Xudong Wang
    Man Yao
    Xiaojie Yao
    Progress in Natural Science:Materials International, 2013, 23 (04) : 402 - 407
  • [5] Band structure design of semiconductors for enhanced photocatalytic activity: The case of TiO2
    Yan, Hui
    Wang, Xudong
    Yao, Man
    Yao, Xiaojie
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2013, 23 (04) : 402 - 407
  • [6] Branched multiphase TiO2 with enhanced photoelectrochemical water splitting activity
    Liu, Xu
    Cao, Xiangkun Elvis
    Liu, Ya
    Li, Xiaobing
    Wang, Meng
    Li, Mingtao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (46) : 21365 - 21373
  • [7] Branched TiO2/Si nanostructures for enhanced photoelectrochemical water splitting
    Noh, Sun Young
    Sun, Ke
    Choi, Chulmin
    Niu, Mutong
    Yang, Muchuan
    Xu, Ke
    Jin, Sungho
    Wang, Deli
    NANO ENERGY, 2013, 2 (03) : 351 - 360
  • [8] Photoelectrochemical analysis of band gap modulated TiO2 for photocatalytic water splitting
    Saraf, Shashank
    Giraldo, Manuel
    Paudel, Hari P.
    Sakthivel, Tamil S.
    Shepard, Cathrine
    Gupta, Ankur
    Leuenberger, Michael N.
    Seal, Sudipta
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (15) : 9938 - 9944
  • [9] Assembling of Bi atoms on TiO2 nanorods boosts photoelectrochemical water splitting of semiconductors
    Pang, Yajun
    Zang, Wenjie
    Kou, Zongkui
    Zhang, Lei
    Xu, Guangqing
    Lv, Jun
    Gao, Xiaorui
    Pan, Zhenghui
    Wang, John
    Wu, Yucheng
    NANOSCALE, 2020, 12 (07) : 4302 - 4308
  • [10] Heterojunction between bimetallic metal-organic framework and TiO2: Band-structure engineering for effective photoelectrochemical water splitting
    Ji Won Yoon
    Jae-Hyeok Kim
    Young-Moo Jo
    Jong-Heun Lee
    Nano Research, 2022, 15 : 8502 - 8509