Learning object categories from Google's image search

被引:0
|
作者
Fergus, R [1 ]
Fei-Fei, L [1 ]
Perona, P [1 ]
Zisserman, A [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current approaches to object category recognition require datasets of training images to be manually prepared, with varying degrees of supervision. We present an approach that can learn an object category from just its name, by utilizing the raw output of image search engines available on the Internet. We develop a new model, TSI-pLSA, which extends pLSA (as applied to visual words) to include spatial information in a translation and scale invariant manner Our approach can handle the high intra-class variability and large proportion of unrelated images returned by search engines. We evaluate the models on standard test sets, showing performance competitive with existing methods trained on hand prepared datasets.
引用
收藏
页码:1816 / 1823
页数:8
相关论文
共 50 条
  • [41] Inaccuracy of Google reverse image search in complex dermatology cases
    Sharifzadeh, Afsheen
    Smith, Gideon P.
    [J]. JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2021, 84 (01) : 202 - 203
  • [42] Google Web and Image Search Visibility Data for Online Store
    Strzelecki, Artur
    [J]. DATA, 2019, 4 (03)
  • [43] Power Quality Waveform Recognition Using Google Image Search Engine (iPQ-Google)
    Manso Silva, Leandro Rodrigues
    Duque, Carlos Augusto
    Ribeiro, Paulo Fernando
    [J]. PROCEEDINGS OF 2016 17TH INTERNATIONAL CONFERENCE ON HARMONICS AND QUALITY OF POWER (ICHQP), 2016, : 1010 - 1013
  • [44] Let's Google: Uncertainty and bilingual search
    Luo, Margaret Meiling
    Nahl, Diane
    [J]. JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY, 2019, 70 (09) : 1014 - 1025
  • [45] Kant's Concept of an Object in General and the Categories
    Straulino, Stefano
    [J]. ANALES DEL SEMINARIO DE HISTORIA DE LA FILOSOFIA, 2021, 38 (01): : 79 - 89
  • [46] Learning Functional Object-Categories from a Relational Spatio-Temporal Representation
    Sridhar, Muralikrishna
    Cohn, Anthony G.
    Hogg, David C.
    [J]. ECAI 2008, PROCEEDINGS, 2008, 178 : 606 - +
  • [47] FROM NGBAKA TO AKA - IN SEARCH OF CATEGORIES
    THOMAS, JMC
    [J]. LINGUISTIQUE, 1988, 24 (02): : 93 - 111
  • [48] Incremental Learning from a Single Seed Image for Object Detection
    Lee, Sehyung
    Lim, Jongwoo
    Suh, Il Hong
    [J]. 2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 1905 - 1912
  • [49] Learning Object-Specific Distance From a Monocular Image
    Zhu, Jing
    Fang, Yi
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3838 - 3847
  • [50] LEARNING OBJECT REPOSITORIES CHALLENGING GOOGLE - THE USERS' POINT OF VIEW
    Clements, K.
    Gras-Velazquez, A.
    Pawlowski, J.
    [J]. INTED2011: 5TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE, 2011, : 627 - 635