Recursive Formulas for Welschinger Invariants of the Projective Plane

被引:23
|
作者
Arroyo, Aubin [1 ]
Brugalle, Erwan [2 ]
Lopez de Medrano, Lucia [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Unidad Cuernavaca, Cuernavaca 62251, Morelos, Mexico
[2] Univ Paris 06, F-75013 Paris, France
关键词
SYMPLECTIC; 4-MANIFOLDS; LOWER BOUNDS; CURVES;
D O I
10.1093/imrn/rnq096
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Welschinger invariants of the real projective plane can be computed via the enumeration of enriched graphs, called marked floor diagrams. By a purely combinatorial study of these objects, we establish a Caporaso-Harris type formula which allows one to compute Welschinger invariants for configurations of points with any number of complex conjugated points.
引用
收藏
页码:1107 / 1134
页数:28
相关论文
共 50 条
  • [21] On Higher Genus Welschinger Invariants of del Pezzo Surfaces
    Shustin, Eugenii
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (16) : 6907 - 6940
  • [22] Welschinger invariants of real del Pezzo surfaces of degree ≥ 2
    Itenberg, Ilia
    Kharlamov, Viatcheslav
    Shustin, Eugenii
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (08)
  • [23] COMPUTABLE ISOMORPHISM INVARIANTS FOR FUNDAMENTAL GROUP OF COMPLEMENT OF A PLANE PROJECTIVE CURVE
    ARNOLD, EM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 71 (02) : 345 - 350
  • [24] Semi-local projective invariants for the recognition of smooth plane curves
    Carlsson, S
    Mohr, R
    Moons, T
    Morin, L
    Rothwell, C
    VanDiest, M
    VanGool, L
    Veillon, F
    Zisserman, A
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 1996, 19 (03) : 211 - 236
  • [25] Semi-local projective invariants for the recognition of smooth plane curves
    Royal Inst of Technology, Stockholm, Sweden
    Int J Comput Vision, 3 (211-236):
  • [26] Welschinger invariants of real Del Pezzo surfaces of degree ≥ 3
    Ilia Itenberg
    Viatcheslav Kharlamov
    Eugenii Shustin
    Mathematische Annalen, 2013, 355 : 849 - 878
  • [27] New cases of logarithmic equivalence of Welschinger and Gromov-Witten invariants
    Itenberg I.
    Kharlamov V.
    Shustin E.
    Proceedings of the Steklov Institute of Mathematics, 2007, 258 (1) : 65 - 73
  • [28] Welschinger invariants of small non-toric Del Pezzo surfaces
    Itenberg, Ilia
    Kharlamov, Viatcheslav
    Shustin, Eugenii
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (02) : 539 - 594
  • [29] Welschinger invariants of real Del Pezzo surfaces of degree ≥ 3
    Itenberg, Ilia
    Kharlamov, Viatcheslav
    Shustin, Eugenii
    MATHEMATISCHE ANNALEN, 2013, 355 (03) : 849 - 878