Welschinger invariants of small non-toric Del Pezzo surfaces

被引:12
|
作者
Itenberg, Ilia [1 ,2 ]
Kharlamov, Viatcheslav [3 ,4 ]
Shustin, Eugenii [5 ]
机构
[1] Univ Paris 06, F-75252 Paris 5, France
[2] Inst Univ France, Inst Math Jussieu, F-75252 Paris 5, France
[3] Univ Strasbourg, F-67084 Strasbourg, France
[4] IRMA, F-67084 Strasbourg, France
[5] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
美国国家科学基金会;
关键词
Tropical curves; real rational curves; enumerative geometry; Welschinger invariants; Caporaso-Harris formula; GROMOV-WITTEN INVARIANTS; ALGEBRAIC-GEOMETRY; PLANE-CURVES; REAL; ENUMERATION; FORMULA;
D O I
10.4171/JEMS/367
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a recursive formula for purely real Welschinger invariants of the following real Del Pezzo surfaces: the projective plane blown up at q real and s <= 1 pairs of conjugate imaginary points, where q + 2s <= 5, and the real quadric blown up at s <= 1 pairs of conjugate imaginary points and having non-empty real part. The formula is similar to Vakil's recursive formula [ 22] for Gromov-Witten invariants of these surfaces and generalizes our recursive formula [ 12] for purely real Welschinger invariants of real toric Del Pezzo surfaces. As a consequence, we prove the positivity of the Welschinger invariants under consideration and their logarithmic asymptotic equivalence to genus zero Gromov-Witten invariants.
引用
收藏
页码:539 / 594
页数:56
相关论文
共 50 条
  • [1] A tropical calculation of the Welschinger invariants of real toric Del Pezzo surfaces
    Shustin, E
    JOURNAL OF ALGEBRAIC GEOMETRY, 2006, 15 (02) : 285 - 322
  • [2] Welschinger invariants of toric Del Pezzo surfaces with nonstandard real structures
    Shustin E.
    Proceedings of the Steklov Institute of Mathematics, 2007, 258 (1) : 218 - 246
  • [3] On Higher Genus Welschinger Invariants of del Pezzo Surfaces
    Shustin, Eugenii
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (16) : 6907 - 6940
  • [4] A Caporaso-Harris type formula for Welschinger invariants of real toric Del Pezzo surfaces
    Itenberg, Ilia
    Kharlamov, Viatcheslav
    Shustin, Eugenii
    COMMENTARII MATHEMATICI HELVETICI, 2009, 84 (01) : 87 - 126
  • [5] Welschinger invariants of real del Pezzo surfaces of degree ≥ 2
    Itenberg, Ilia
    Kharlamov, Viatcheslav
    Shustin, Eugenii
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (08)
  • [6] Welschinger invariants of real Del Pezzo surfaces of degree ≥ 3
    Ilia Itenberg
    Viatcheslav Kharlamov
    Eugenii Shustin
    Mathematische Annalen, 2013, 355 : 849 - 878
  • [7] Welschinger invariants of real Del Pezzo surfaces of degree ≥ 3
    Itenberg, Ilia
    Kharlamov, Viatcheslav
    Shustin, Eugenii
    MATHEMATISCHE ANNALEN, 2013, 355 (03) : 849 - 878
  • [8] Welschinger invariants of real Del Pezzo surfaces of degree ≥ 2 (Vol 26, 1792001, 2015)
    Itenberg, Ilia
    Kharlamov, Viatcheslav
    Shustin, Eugenii
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (07)
  • [9] SEMICASCADES OF TORIC LOG DEL PEZZO SURFACES
    Hwang, Dongseon
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (01) : 179 - 190
  • [10] Computing α-Invariants of Singular del Pezzo Surfaces
    Ivan Cheltsov
    Dimitra Kosta
    The Journal of Geometric Analysis, 2014, 24 : 798 - 842