Welschinger invariants of small non-toric Del Pezzo surfaces

被引:12
|
作者
Itenberg, Ilia [1 ,2 ]
Kharlamov, Viatcheslav [3 ,4 ]
Shustin, Eugenii [5 ]
机构
[1] Univ Paris 06, F-75252 Paris 5, France
[2] Inst Univ France, Inst Math Jussieu, F-75252 Paris 5, France
[3] Univ Strasbourg, F-67084 Strasbourg, France
[4] IRMA, F-67084 Strasbourg, France
[5] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
美国国家科学基金会;
关键词
Tropical curves; real rational curves; enumerative geometry; Welschinger invariants; Caporaso-Harris formula; GROMOV-WITTEN INVARIANTS; ALGEBRAIC-GEOMETRY; PLANE-CURVES; REAL; ENUMERATION; FORMULA;
D O I
10.4171/JEMS/367
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a recursive formula for purely real Welschinger invariants of the following real Del Pezzo surfaces: the projective plane blown up at q real and s <= 1 pairs of conjugate imaginary points, where q + 2s <= 5, and the real quadric blown up at s <= 1 pairs of conjugate imaginary points and having non-empty real part. The formula is similar to Vakil's recursive formula [ 22] for Gromov-Witten invariants of these surfaces and generalizes our recursive formula [ 12] for purely real Welschinger invariants of real toric Del Pezzo surfaces. As a consequence, we prove the positivity of the Welschinger invariants under consideration and their logarithmic asymptotic equivalence to genus zero Gromov-Witten invariants.
引用
收藏
页码:539 / 594
页数:56
相关论文
共 50 条