A general accuracy criterion for finite element approximation

被引:12
|
作者
Tsukerman, I [1 ]
机构
[1] Univ Akron, Dept Elect Engn, Akron, OH 44325 USA
基金
美国国家科学基金会;
关键词
finite elements; accuracy estimate; approximation; interpolation; stiffness matrix; tetrahedral mesh;
D O I
10.1109/20.717557
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The accuracy of Finite Element approximation depends on the size and shape of elements. The proposed theory clarifies the source of shape related errors. A new general accuracy condition based on the maximum eigenvalue of the element stiffness matrix (or, alternatively, its trace) is presented. Several new and several familiar geometric criteria follow directly from the eigenvalue condition as particular cases. The new accuracy criterion can be used in engineering practice as an a priori measure of the quality of finite element meshes.
引用
收藏
页码:2425 / 2428
页数:4
相关论文
共 50 条
  • [31] APPROXIMATION CLASSES FOR ADAPTIVE HIGHER ORDER FINITE ELEMENT APPROXIMATION
    Gaspoz, Fernando D.
    Morin, Pedro
    MATHEMATICS OF COMPUTATION, 2014, 83 (289) : 2127 - 2160
  • [32] On a Criterion for Evaluating the Accuracy of Approximation by Variable Precision Rough Sets
    Kudo, Yasuo
    Murai, Tetsuya
    INTEGRATED UNCERTAINTY MANAGEMENT AND APPLICATIONS, 2010, 68 : 319 - +
  • [33] FINITE-DIFFERENCE AND FINITE-ELEMENT METHODS OF APPROXIMATION
    WALSH, J
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 323 (1553): : 155 - &
  • [34] On a finite element approximation for the elastoplastic torsion problem
    Chouly, Franz
    Hild, Patrick
    APPLIED MATHEMATICS LETTERS, 2022, 132
  • [35] Approximation properties of the Generalized Finite Element Method
    C. Anitescu
    U. Banerjee
    Advances in Computational Mathematics, 2011, 34 : 369 - 390
  • [36] A finite element approximation of an image segmentation problem
    Cortesani, G
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (02): : 243 - 259
  • [37] Finite Element Approximation for the Fractional Eigenvalue Problem
    Juan Pablo Borthagaray
    Leandro M. Del Pezzo
    Sandra Martínez
    Journal of Scientific Computing, 2018, 77 : 308 - 329
  • [38] A triangular finite element with new approximation properties
    N. V. Baidakova
    Proceedings of the Steklov Institute of Mathematics, 2017, 296 : 74 - 84
  • [39] Finite Element Approximation for the Fractional Eigenvalue Problem
    Pablo Borthagaray, Juan
    Del Pezzo, Leandro M.
    Martinez, Sandra
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) : 308 - 329
  • [40] Finite element approximation of fractional Neumann problems
    Bersetche, Francisco M.
    Pablo Borthagaray, Juan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (04) : 3207 - 3240