A general accuracy criterion for finite element approximation

被引:12
|
作者
Tsukerman, I [1 ]
机构
[1] Univ Akron, Dept Elect Engn, Akron, OH 44325 USA
基金
美国国家科学基金会;
关键词
finite elements; accuracy estimate; approximation; interpolation; stiffness matrix; tetrahedral mesh;
D O I
10.1109/20.717557
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The accuracy of Finite Element approximation depends on the size and shape of elements. The proposed theory clarifies the source of shape related errors. A new general accuracy condition based on the maximum eigenvalue of the element stiffness matrix (or, alternatively, its trace) is presented. Several new and several familiar geometric criteria follow directly from the eigenvalue condition as particular cases. The new accuracy criterion can be used in engineering practice as an a priori measure of the quality of finite element meshes.
引用
收藏
页码:2425 / 2428
页数:4
相关论文
共 50 条
  • [21] Nodal finite element approximation of peridynamics
    Jha, Prashant K.
    Diehl, Patrick
    Lipton, Robert
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 434
  • [22] Finite element approximation of piezoelectric plates
    Auricchio, F
    Bisegna, P
    Lovadina, C
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 50 (06) : 1469 - 1499
  • [23] Finite Element Approximation of the Hardy Constant
    Della Pietra, Francesco
    Fantuzzi, Giovanni
    Ignat, Liviu I.
    Masiello, Alba Lia
    Paoli, Gloria
    Zuazua, Enrique
    JOURNAL OF CONVEX ANALYSIS, 2024, 31 (02) : 497 - 523
  • [24] Finite element approximation on quadrilateral meshes
    Arnold, DN
    Boffi, D
    Falk, RS
    Gastaldi, L
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2001, 17 (11): : 805 - 812
  • [25] Finite element approximation of the Einstein tensor
    Gawlik, Evan S.
    Neunteufel, Michael
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2025,
  • [26] Finite element approximation of the Sobolev constant
    Antonietti, Paola F.
    Pratelli, Aldo
    NUMERISCHE MATHEMATIK, 2011, 117 (01) : 37 - 64
  • [27] Finite element approximation for equations of magnetohydrodynamics
    Wiedmer, M
    MATHEMATICS OF COMPUTATION, 2000, 69 (229) : 83 - 101
  • [28] Finite element approximation of finite deformation dislocation mechanics
    Arora, Rajat
    Zhang, Xiaohan
    Acharya, Amit
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 367
  • [29] High-accuracy finite element
    Yakovlev, A. V.
    Kazakov, O. D.
    Ryzhikova, E. G.
    Afanasyeva, N. A.
    MECHANICAL SCIENCE AND TECHNOLOGY UPDATE (MSTU-2018), 2018, 1050
  • [30] GENERAL COMPLETENESS CRITERION FOR FINITE PARTIAL ALGEBRAS
    HADDAD, L
    ROSENBERG, IG
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 304 (17): : 507 - 509