PARAMETER ESTIMATION FOR HIERARCHICAL CHANNEL PROFILING

被引:0
|
作者
Dimas, Anastasios [1 ]
Kalogerias, Dionysios S. [2 ]
Koumpouzi, Chryssalenia [1 ]
Petropulu, Athina P. [1 ]
机构
[1] Rutgers State Univ, Dept Elect & Comp Engn, New Brunswick, NJ 08901 USA
[2] Princeton Univ, Dept Operat Res & Financial Engn ORFE, Princeton, NJ 08544 USA
关键词
hierarchical channel modeling; change point detection; wireless networks; TIME-SERIES; SEGMENTATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is a first step towards developing a channel model that will allow channel prediction in time and space. The wireless channel is described in time and space using a hierarchical model. At each point in time, a set of networked nodes measure their received signal strength (RSS), which is correlated in time and space according to a known statistical model. The channel state, a vector of channel characteristics, such as the path-loss exponent and shadowing power, is time varying and hidden from the network nodes. Based on this model structure, we propose an algorithm, which divides the recorded RSS into time segments, over which the channel state is constant, and also provides state estimates corresponding to each segment. The proposed model is subsequently fitted to indoor Wi-Fi measurements, obtaining meaningful segments, and providing insight on the time evolution of the channel parameters.
引用
收藏
页码:234 / 238
页数:5
相关论文
共 50 条
  • [31] Efficient channel estimation for OFDM systems with hierarchical constellations
    Souto, Nuno
    Dinis, Rui
    Silva, Joao Carlos
    2007 INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES, VOLS 1-3, 2007, : 998 - +
  • [32] Parameter estimation for a simple hierarchical generative model for XML retrieval
    Ogilvie, Paul
    Callan, Jamie
    ADVANCES IN XML INFORMATION RETRIEVAL AND EVALUATION, 2006, 3977 : 211 - 224
  • [33] CONSISTENCY OF EMPIRICAL BAYES AND KERNEL FLOW FOR HIERARCHICAL PARAMETER ESTIMATION
    Chen, Yifan
    Owhadi, Houman
    Stuart, Andrew M.
    MATHEMATICS OF COMPUTATION, 2021, 90 (332) : 2527 - 2578
  • [34] Inference and parameter estimation on hierarchical belief networks for image segmentation
    Wolf, Christian
    Gavin, Gerald
    NEUROCOMPUTING, 2010, 73 (4-6) : 563 - 569
  • [35] Parameter Estimation and Identifiability in Kinetic Flux Profiling Models of Metabolism
    Guppy, Breanna
    Mitchell, Colleen
    Taylor, Eric B.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2025, 87 (01)
  • [36] Channel parameter estimation for polarization diverse coherent receivers
    Geyer, J. C.
    Hauske, F. N.
    Fludger, C. R. S.
    Duthel, T.
    Schulien, C.
    Kuschnerov, M.
    Piyawanno, K.
    van den Borne, D.
    Schmidt, E-D
    Spinnler, B.
    de Waardt, H.
    Lankl, B.
    Schmauss, B.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2008, 20 (9-12) : 776 - 778
  • [37] Channel parameter estimation in the CDMA multiuser detection problem
    Yano, Toru
    Nakamura, Kazutaka
    Tanaka, Toshiyuki
    Honda, Satoshi
    INSS 07: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON NETWORKED SENSING SYSTEMS, 2007, : 293 - 293
  • [38] Efficient Method for Interleaver Parameter Estimation in a Fading Channel
    Kim, Geunbae
    Ahn, Seongjin
    Yoon, Dongweon
    2019 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC): ICT CONVERGENCE LEADING THE AUTONOMOUS FUTURE, 2019, : 1416 - 1418
  • [39] Sparse channel parameter estimation based on superimposed training
    Zhao, Jun-Yi
    Meng, Wei-Xiao
    Jia, Shi-Lou
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2008, 29 (06): : 594 - 598
  • [40] Multidimensional Sparse Recovery for MIMO Channel Parameter Estimation
    Steffens, Christian
    Yang, Yang
    Pesavento, Marius
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 66 - 70