Estimation of the maximum entropy quantile function using fractional probability weighted moments

被引:17
|
作者
Deng, Jian [1 ,2 ]
Pandey, M. D. [1 ]
机构
[1] Univ Waterloo, Dept Civil Engn, Waterloo, ON N2L 3G1, Canada
[2] Cent S Univ, Sch Resources & Safety Engn, Changsha 410083, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
maximum entropy principle; probability weighted moment; quantile function; generalized Pareto distribution; Weibull distribution; extreme value analysis; probability theory;
D O I
10.1016/j.strusafe.2007.05.005
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In a previous study, the conventional or integral-order probability weighted moments (IPWM) and the principle of maximum entropy were combined to derive an analytical form of the quantile function of a random variable [Pandey MD. Direct estimation of quantile functions using the maximum entropy principle. Struct Safety 2000;22(1):61-79]. This method is extended and improved in the present paper by utilizing the concept of fractional probability weighted moments (FPWMs). A general estimation method is proposed in which the Monte Carlo simulations and optimization algorithms are combined to estimate fractionals of FPWM that would lead to the best-fit quantile function. The numerical examples presented in the paper illustrate that the accuracy of the proposed FPWM based quantile function is superior to that estimated from the use of conventional IPWMs. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:307 / 319
页数:13
相关论文
共 50 条
  • [41] Estimation of the Probability Density Function of Renewable Power Production using a Hybrid Method of Minimum Frequency and Maximum Entropy
    Li, Dan
    Yan, Wei
    Li, Wenyuan
    Chen, Tao
    2016 INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS), 2016,
  • [42] Local estimation of failure probability function and its confidence interval with maximum entropy principle
    Ching, Jianye
    Hsieh, Yi-Hung
    PROBABILISTIC ENGINEERING MECHANICS, 2007, 22 (01) : 39 - 49
  • [43] Maximum Entropy Estimation of Density Function Using Order Statistics
    Reza, Ali M.
    Kirlin, R. Lynn
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (05) : 3075 - 3094
  • [44] Nonparametric estimation of quantile-based entropy function
    Subhash, Silpa
    Sunoj, S. M.
    Sankaran, P. G.
    Rajesh, G.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (05) : 1805 - 1821
  • [45] Maximum-Likelihood Maximum-Entropy Constrained Probability Density Function Estimation for Prediction of Rare Events
    Ahooyi, Taha Mohseni
    Soroush, Masoud
    Arbogast, Jeffrey E.
    Seider, Warren D.
    Oktem, Ulku G.
    AICHE JOURNAL, 2014, 60 (03) : 1013 - 1026
  • [46] Moments and Maximum Entropy Method for Expanded Uncertainty Estimation in Measurements
    Rajan, Arvind
    Kuang, Ye Chow
    Ooi, Melanie Po-Leen
    Demidenko, Serge N.
    2017 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2017, : 1179 - 1184
  • [47] ENTROPY ESTIMATION USING THE PRINCIPLE OF MAXIMUM ENTROPY
    Behmardi, Behrouz
    Raich, Raviv
    Hero, Alfred O., III
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2008 - 2011
  • [48] SIMULTANEOUS EQUATION ESTIMATION BASED ON MAXIMUM-ENTROPY MOMENTS
    THEIL, H
    MEISNER, JF
    ECONOMICS LETTERS, 1980, 5 (04) : 339 - 344
  • [49] The generalized maximum entropy trapezoidal probability density function
    Lira, I.
    METROLOGIA, 2008, 45 (04) : L17 - L20
  • [50] Significance of higher moments for complete characterization of the travel time probability density function in heterogeneous porous media using the maximum entropy principle
    Gotovac, Hrvoje
    Cvetkovic, Vladimir
    Andricevic, Roko
    WATER RESOURCES RESEARCH, 2010, 46