Estimation of the Probability Density Function of Renewable Power Production using a Hybrid Method of Minimum Frequency and Maximum Entropy

被引:0
|
作者
Li, Dan [1 ]
Yan, Wei [1 ]
Li, Wenyuan [1 ]
Chen, Tao [2 ]
机构
[1] Chongqing Univ, Sch Elect Engn, Chongqing, Peoples R China
[2] Chongqing Elect Power Res Inst, Chongqing, Peoples R China
关键词
renewable power production; probability density function; maximum entropy; frequency histograms; ECONOMIC-DISPATCH; LOAD FLOW; WIND; HISTOGRAM;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurately estimating the probability distribution of renewable power production is a fundamental and challenging task in the probabilistic analysis of power systems with a high penetration of renewable energy. In this study, a novel hybrid method of minimum frequency and maximum entropy (MFME) is proposed for accurately and rapidly estimating the probability density function (PDF) of renewable power production. Based on the maximum entropy (ME) principle, a probability distribution optimization model is built to obtain a PDF estimator with the maximum distribution entropy. For convenience in solving the model, the probability density estimates of actual samples calculated by the minimum frequency (ME) method are introduced as a supplement to the moment constraints of the ME optimization model. The results indicate that the MFME has a higher accuracy compared with the conventional parameter distribution estimation(CPDE) and Gaussian kernel density estimation (GKDE), and its advantages of no boundary effects and a fast sampling speed for a large original sample size are more suitable for the PDF estimation of renewable power production.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A new maximum entropy method for estimation of multimodal probability density function
    Li, G.
    Wang, Y. X.
    Zeng, Y.
    He, W. X.
    [J]. APPLIED MATHEMATICAL MODELLING, 2022, 102 : 137 - 152
  • [2] Maximum entropy approach to probability density estimation
    Miller, G
    Horn, D
    [J]. 1998 SECOND INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED INTELLIGENT ELECTRONIC SYSTEMS, KES'98 PROCEEDINGS, VOL 1, 1998, : 225 - 230
  • [3] MAXIMUM ENTROPY ESTIMATION OF THE PROBABILITY DENSITY FUNCTION FROM THE HISTOGRAM USING ORDER STATISTIC CONSTRAINTS
    Kirlin, R. Lynn
    Reza, Ali M.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6407 - 6410
  • [4] Maximum Entropy Estimation of Density Function Using Order Statistics
    Reza, Ali M.
    Kirlin, R. Lynn
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (05) : 3075 - 3094
  • [5] ON THE ESTIMATION OF A PROBABILITY DENSITY-FUNCTION BY THE MAXIMUM PENALIZED LIKELIHOOD METHOD
    SILVERMAN, BW
    [J]. ANNALS OF STATISTICS, 1982, 10 (03): : 795 - 810
  • [6] The generalized maximum entropy trapezoidal probability density function
    Lira, I.
    [J]. METROLOGIA, 2008, 45 (04) : L17 - L20
  • [7] Estimation of the maximum entropy quantile function using fractional probability weighted moments
    Deng, Jian
    Pandey, M. D.
    [J]. STRUCTURAL SAFETY, 2008, 30 (04) : 307 - 319
  • [8] Noise Power Spectral Density Estimation Using the Generalized Gamma Probability Density Function and Minimum Mean Square Error
    Dang, Xin
    Nakai, Takayoshi
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2014, E97A (03) : 820 - 829
  • [9] Maximum-Likelihood Maximum-Entropy Constrained Probability Density Function Estimation for Prediction of Rare Events
    Ahooyi, Taha Mohseni
    Soroush, Masoud
    Arbogast, Jeffrey E.
    Seider, Warren D.
    Oktem, Ulku G.
    [J]. AICHE JOURNAL, 2014, 60 (03) : 1013 - 1026
  • [10] Probability density estimation using entropy maximization
    Miller, G
    Horn, D
    [J]. NEURAL COMPUTATION, 1998, 10 (07) : 1925 - 1938