MetILs3: A Strategy for High Density Energy Storage Using Redox-Active Ionic Liquids

被引:12
|
作者
Small, Leo J. [1 ]
Pratt, Harry D., III [1 ]
Staiger, Chad L. [1 ]
Anderson, Travis M. [1 ]
机构
[1] Sandia Natl Labs, POB 5800,MS1411, Albuquerque, NM 87185 USA
来源
ADVANCED SUSTAINABLE SYSTEMS | 2017年 / 1卷 / 09期
关键词
electrochemistry; flow batteries; grid scale storage; ionic liquids; redox; FLOW BATTERIES; ELECTROLYTES; COMPLEXES; FERROCENE; COMMUNICATION;
D O I
10.1002/adsu.201700066
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A systematic approach is presented for increasing the concentration of redox-active species in electrolytes for nonaqueous redox flow batteries (RFBs). Starting with an ionic liquid consisting of a metal coordination cation (MetIL), ferrocene-containing ligands and iodide anions are substituted incrementally into the structure. While chemical structures can be drawn for molecules with 10 m redox-active electrons (RAE), practical limitations such as melting point and phase stability constrain the structures to 4.2 m RAE, a 2.3x improvement over the original MetIL. Dubbed "MetILs(3)," these ionic liquids possess redox activity in the cation core, ligands, and anions. Throughout all compositions, infrared spectroscopy shows the ethanolamine-based ligands primarily coordinate to the Fe2+ core via hydroxyl groups. Calorimetry conveys a profound change in thermophysical properties, not only in melting temperature but also in suppression of a cold crystallization only observed in the original MetIL. Square wave voltammetry reveals redox processes characteristic of each molecular location. Testing a laboratory-scale RFB demonstrates Coulombic efficiencies > 95% and increased voltage efficiencies due to more facile redox kinetics, effectively increasing capacity 4x. Application of this strategy to other chemistries, optimizing melting point and conductivity, can yield > 10 m RAE, making nonaqueous RFB a viable technology for grid scale storage.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Biological Nicotinamide Cofactor as a Redox-Active Motif for Reversible Electrochemical Energy Storage
    Kim, Jihyeon
    Ko, Sunghyun
    Noh, Chanwoo
    Kim, Heechan
    Lee, Sechan
    Kim, Dodam
    Park, Hyeokjun
    Kwon, Giyun
    Son, Giyeong
    Ko, Jong Wan
    Jung, YounJoon
    Lee, Dongwhan
    Park, Chan Beum
    Kang, Kisuk
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (47) : 16764 - 16769
  • [42] Covalent functionalization of carbon materials with redox-active organic molecules for energy storage
    Khan, Rizwan
    Nishina, Yuta
    NANOSCALE, 2021, 13 (01) : 36 - 50
  • [43] Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage
    Hatzell, K. B.
    Boota, M.
    Kurnbur, E. C.
    Gogotsi, Y.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) : A5007 - A5012
  • [44] Carbon black nanoparticle trapping: a strategy to realize the true energy storage potential of redox-active conjugated microporous polymers
    Kang, Chang Wan
    Ko, Yoon-Joo
    Lee, Sang Moon
    Kim, Hae Jin
    Choi, Jaewon
    Son, Seung Uk
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (33) : 17978 - 17984
  • [45] Describing the unsuspected advantage of redox ionic liquids applied to electrochemical energy storage
    Bodin, C.
    Gelinas, B.
    Deng, J.
    Pithaksinsakul, Kulika
    Zhu, Y.
    Rochefort, D.
    Fontaine, O.
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2023, 64
  • [46] Designing Redox-Active Oligomers for Crossover-Free, Nonaqueous Redox-Flow Batteries with High Volumetric Energy Density
    Baran, Miranda J.
    Braten, Miles N.
    Montoto, Elena C.
    Gossage, Zachary T.
    Ma, Lin
    Chenard, Etienne
    Moore, Jeffrey S.
    Rodriguez-Lopez, Joaquin
    Helms, Brett A.
    CHEMISTRY OF MATERIALS, 2018, 30 (11) : 3861 - 3866
  • [47] Chiral and Redox-Active Room-Temperature Ionic Liquids Based on Ferrocene and L-Proline
    Bouvet, Carola B.
    Krautscheid, Harald
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2016, (28) : 4573 - 4580
  • [48] Redox-active macromolecular structures for energy storage in non-aqueous redox-flow batteries
    Gavvalapalli, Nagarjuna
    Montoto, Elena
    Hui, Jingshu
    Burgess, Mark
    Hernandez-Burgos, Kenneth
    Sekerak, Nina
    Cheng, Kevin
    Chenard, Etienne
    Moores, Jeffrey
    Lopez, Joaquin Rodriguez
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [49] Biredox Eutectic Electrolytes Derived from Organic Redox-Active Molecules: High-Energy Storage Systems
    Zhang, Changkun
    Qian, Yumin
    Ding, Yu
    Zhang, Leyuan
    Guo, Xuelin
    Zhao, Yu
    Yu, Guihua
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (21) : 7045 - 7050
  • [50] Rational Design of a Redox-Active Nonaqueous Electrolyte for a High-Energy-Density Supercapacitor Based on Carbon Nanotubes
    Park, Jinwoo
    Yoo, Young-Eun
    Mai, Liqiang
    Kim, Woong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (08) : 7728 - 7735