MetILs3: A Strategy for High Density Energy Storage Using Redox-Active Ionic Liquids

被引:12
|
作者
Small, Leo J. [1 ]
Pratt, Harry D., III [1 ]
Staiger, Chad L. [1 ]
Anderson, Travis M. [1 ]
机构
[1] Sandia Natl Labs, POB 5800,MS1411, Albuquerque, NM 87185 USA
来源
ADVANCED SUSTAINABLE SYSTEMS | 2017年 / 1卷 / 09期
关键词
electrochemistry; flow batteries; grid scale storage; ionic liquids; redox; FLOW BATTERIES; ELECTROLYTES; COMPLEXES; FERROCENE; COMMUNICATION;
D O I
10.1002/adsu.201700066
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A systematic approach is presented for increasing the concentration of redox-active species in electrolytes for nonaqueous redox flow batteries (RFBs). Starting with an ionic liquid consisting of a metal coordination cation (MetIL), ferrocene-containing ligands and iodide anions are substituted incrementally into the structure. While chemical structures can be drawn for molecules with 10 m redox-active electrons (RAE), practical limitations such as melting point and phase stability constrain the structures to 4.2 m RAE, a 2.3x improvement over the original MetIL. Dubbed "MetILs(3)," these ionic liquids possess redox activity in the cation core, ligands, and anions. Throughout all compositions, infrared spectroscopy shows the ethanolamine-based ligands primarily coordinate to the Fe2+ core via hydroxyl groups. Calorimetry conveys a profound change in thermophysical properties, not only in melting temperature but also in suppression of a cold crystallization only observed in the original MetIL. Square wave voltammetry reveals redox processes characteristic of each molecular location. Testing a laboratory-scale RFB demonstrates Coulombic efficiencies > 95% and increased voltage efficiencies due to more facile redox kinetics, effectively increasing capacity 4x. Application of this strategy to other chemistries, optimizing melting point and conductivity, can yield > 10 m RAE, making nonaqueous RFB a viable technology for grid scale storage.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Redox-Active Polymers Designed for the Circular Economy of Energy Storage Devices
    Tan, Siew Ting Melissa
    Quill, Tyler J.
    Moser, Maximilian
    LeCroy, Garrett
    Chen, Xingxing
    Wu, Yilei
    Takacs, Christopher J.
    Salleo, Alberto
    Giovannitti, Alexander
    ACS ENERGY LETTERS, 2021, 6 (10): : 3450 - 3457
  • [32] Redox-active covalent organic frameworks for pseudocapacitive electrochemical energy storage
    Mulzer, Catherine
    Dichtel, William
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [33] Ionic liquid incorporated, redox-active blend polymer electrolyte for high energy density quasi-solid-state carbon supercapacitor
    Yadav, Neetu
    Yadav, Nitish
    Hashmi, S. A.
    JOURNAL OF POWER SOURCES, 2020, 451
  • [34] A redox-active organic cation for safer high energy density Li-ion batteries
    Ji, Weixiao
    Huang, He
    Huang, Xingkang
    Zhang, Xiaoxiao
    Zheng, Dong
    Ding, Tianyao
    Chen, Junhong
    Lambert, Tristan H.
    Qu, Deyang
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (33) : 17156 - 17162
  • [35] High energy density and high working voltage of a quasi-solid-state supercapacitor with a redox-active ionic liquid added gel polymer electrolyte
    Geng, Cheng-Long
    Fan, Le-Qing
    Wang, Chun-Yan
    Wang, Yong-Lan
    Sun, Si-Jia
    Song, Ze-Yu
    Liu, Na
    Wu, Ji-Huai
    NEW JOURNAL OF CHEMISTRY, 2019, 43 (47) : 18935 - 18942
  • [36] Characteristics of Capacitors Based on Ionic Liquids: From Dielectric Polymers to Redox-Active Adsorbed Species
    Lust, E.
    Siinor, L.
    Kurig, H.
    Romann, T.
    Ivanistsev, V.
    Siimenson, C.
    Thomberg, T.
    Kruusma, J.
    Lust, K.
    Pikma, P.
    Anderson, E.
    Grozovski, V.
    Palm, R.
    Lall, L.
    Ruzanov, A.
    Tooming, T.
    Oll, O.
    Janes, A.
    MOLTEN SALTS AND IONIC LIQUIDS 20, 2016, 75 (15): : 161 - 170
  • [37] A redox-active radical as an effective nanoelectronic component: stability and electrochemical tunnelling spectroscopy in ionic liquids
    Rudnev, Alexander V.
    Franco, Carlos
    Crivillers, Nuria
    Seber, Gonca
    Droghetti, Andrea
    Rungger, Ivan
    Pobelov, Ilya V.
    Veciana, Jaume
    Mas-Torrent, Marta
    Rovira, Concepcio
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (40) : 27733 - 27737
  • [38] Redox-active mesoporous carbon nanosheet with rich cracks for high-performance electrochemical energy storage
    Wei, Wei
    Wan, Liu
    Du, Cheng
    Zhang, Yan
    Xie, Mingjiang
    Tian, Zhengfang
    Chen, Jian
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 794 : 247 - 254
  • [39] Self-Assembled, Redox-Active Graphene Electrodes for High-Performance Energy Storage Devices
    Liu, Tianyuan
    Kavian, Reza
    Kim, Inkyu
    Lee, Seung Woo
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (24): : 4324 - 4330
  • [40] High-Energy-Density 3.5 V Carbon Supercapacitor Fabricated with Ionic-Liquid-Incorporated Redox-Active Gel Polymer Electrolyte
    Hor, Abbas Ali
    Yadav, Neetu
    Hashmi, S. A.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (06) : 7627 - 7641