Natural dualities for varieties of MV-algebras, I

被引:20
|
作者
Niederkorn, P [1 ]
机构
[1] Univ Liege, Dept Algebra & Log, B-4000 Liege, Belgium
关键词
D O I
10.1006/jmaa.2000.7153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
MV-algebras are the Lindenbaum algebras for Lukasiewiez's infinite-valued logic, just as Boolean algebras correspond to the classical propositional calculus. The finitely generated subvarieties of the variety M of all MV-algebras are generated by finite chains. We develop a natural duality, in the sense of Davey and Werner, for each subvariety generated by a finite chain, and use it to describe the free and the injective members of these classes. Finally, we point out the relations between the dualities and some categorical equivalences discovered by A. Di Nola and A. Lettieri. (C) 2001 Academic Press.
引用
收藏
页码:58 / 73
页数:16
相关论文
共 50 条
  • [31] On free MV-algebras
    Jakubík, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2003, 53 (02) : 311 - 317
  • [32] Similarity MV-algebras
    Gerla, B
    Leustean, I
    FUNDAMENTA INFORMATICAE, 2006, 69 (03) : 287 - 300
  • [33] Projective MV-algebras
    Di Nola, Antonio
    Grigolia, Revaz
    Lettieri, Ada
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2008, 47 (03) : 323 - 332
  • [34] On archimedean MV-algebras
    Ján Jakubík
    Czechoslovak Mathematical Journal, 1998, 48 : 575 - 582
  • [35] NORMALIZATION OF MV-ALGEBRAS
    Chajda, I.
    Halas, R.
    Kuehr, J.
    Vanzurova, A.
    MATHEMATICA BOHEMICA, 2005, 130 (03): : 283 - 300
  • [36] The Writing of the MV-algebras
    C. C. Chang
    Studia Logica, 1998, 61 (1) : 3 - 6
  • [37] Generalized MV-algebras
    Galatos, N
    Tsinakis, C
    JOURNAL OF ALGEBRA, 2005, 283 (01) : 254 - 291
  • [38] On tense MV-algebras
    Botur, Michal
    Paseka, Jan
    FUZZY SETS AND SYSTEMS, 2015, 259 : 111 - 125
  • [39] Extensions of MV-algebras
    Pulmannová, S
    SOFT COMPUTING, 2003, 7 (07) : 476 - 481
  • [40] Measures on MV-algebras
    Fric, R
    SOFT COMPUTING, 2002, 7 (02) : 130 - 137