Natural dualities for varieties of MV-algebras, I

被引:20
|
作者
Niederkorn, P [1 ]
机构
[1] Univ Liege, Dept Algebra & Log, B-4000 Liege, Belgium
关键词
D O I
10.1006/jmaa.2000.7153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
MV-algebras are the Lindenbaum algebras for Lukasiewiez's infinite-valued logic, just as Boolean algebras correspond to the classical propositional calculus. The finitely generated subvarieties of the variety M of all MV-algebras are generated by finite chains. We develop a natural duality, in the sense of Davey and Werner, for each subvariety generated by a finite chain, and use it to describe the free and the injective members of these classes. Finally, we point out the relations between the dualities and some categorical equivalences discovered by A. Di Nola and A. Lettieri. (C) 2001 Academic Press.
引用
收藏
页码:58 / 73
页数:16
相关论文
共 50 条
  • [21] Hyperfinite MV-algebras
    Belluce, L. P.
    Di Nola, A.
    Lenzi, G.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (07) : 1208 - 1223
  • [22] Weak MV-algebras
    Halas, Radomir
    Plojhar, Lubos
    MATHEMATICA SLOVACA, 2008, 58 (03) : 253 - 262
  • [23] Vectorial MV-algebras
    Noje, D
    Bede, B
    SOFT COMPUTING, 2003, 7 (04) : 258 - 262
  • [24] Strict MV-algebras
    Ambrosio, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 237 (01) : 320 - 326
  • [25] On archimedean MV-algebras
    Jakubík, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1998, 48 (03) : 575 - 582
  • [26] POLYADIC MV-ALGEBRAS
    SCHWARTZ, D
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1980, 26 (06): : 561 - 564
  • [27] Frames and MV-algebras
    Belluce L.P.
    Di Nola A.
    Studia Logica, 2005, 81 (3) : 357 - 385
  • [28] On product MV-algebras
    Jakubík, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2002, 52 (04) : 797 - 810
  • [29] On Product MV-Algebras
    Ján Jakubík
    Czechoslovak Mathematical Journal, 2002, 52 : 797 - 810
  • [30] Implication in MV-algebras
    Chajda, I
    Halas, R
    Kühr, J
    ALGEBRA UNIVERSALIS, 2005, 52 (04) : 377 - 382