Parallel algorithms for finding polynomial Roots on OTIS-torus

被引:7
|
作者
Lucas, Keny T. [1 ]
Jana, Prasanta K. [2 ]
机构
[1] Xavier Inst Social Serv, Dept Informat Management, Ranchi 834001, Bihar, India
[2] Mines Univ, Indian Sch, Dept Comp Sci & Engn, Dhanbad 826004, Bihar, India
来源
JOURNAL OF SUPERCOMPUTING | 2010年 / 54卷 / 02期
关键词
Parallel algorithms; Optoelectronic parallel computer; OTIS-2D torus; Polynomial roots; Durand-Kerner scheme; Ehrlich scheme; TOPOLOGICAL PROPERTIES; ZEROS;
D O I
10.1007/s11227-009-0312-7
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present two parallel algorithms for finding all the roots of an N-degree polynomial equation on an efficient model of Optoelectronic Transpose Interconnection System (OTIS), called OTIS-2D torus. The parallel algorithms are based on the iterative schemes of Durand-Kerner and Ehrlich methods. We show that the algorithm for the Durand-Kerner method requires (N (0.75)+0.5N (0.25)-1) electronic moves + 2(N (0.5)-1) OTIS moves using N processors. The parallel algorithm for Ehrlich method is shown to run in (N (0.75)+0.5N (0.25)-1) electronic moves + 2(N (0.5)-1) OTIS moves with the same number of processors. The algorithms have lower AT cost than the algorithms presented in Jana (Parallel Comput 32:301-312, 2006). The scalability of the algorithms is also discussed.
引用
收藏
页码:139 / 153
页数:15
相关论文
共 50 条
  • [31] FINDING POLYNOMIAL ROOTS BY DYNAMICAL SYSTEMS - A CASE STUDY
    Shemyakov, Sergey
    Chernov, Roman
    Rumiantsau, Dzmitry
    Schleicher, Dierk
    Schmitt, Simon
    Shemyakov, Anton
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (12) : 6945 - 6965
  • [32] Parallel algorithms for finding cliques in a graph
    Szabo, S.
    5TH INTERNATIONAL WORKSHOP ON MULTI-RATE PROCESSES AND HYSTERESIS (MURPHYS 2010), 2010, 268
  • [33] An Algorithms for Finding the Cube Roots in Finite Fields
    Faisal
    Rojali
    Bin Mohamad, Mohd Sham
    5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE 2020, 2021, 179 : 838 - 844
  • [34] Ring, torus and hypercube architectures/algorithms for parallel computing
    Lakshmivarahan, S
    Dhall, SK
    PARALLEL COMPUTING, 1999, 25 (13-14) : 1877 - 1906
  • [35] A FAST PARALLEL ALGORITHM FOR DETERMINING ALL ROOTS OF A POLYNOMIAL WITH REAL ROOTS
    BENOR, M
    FEIG, E
    KOZEN, D
    TIWARI, P
    SIAM JOURNAL ON COMPUTING, 1988, 17 (06) : 1081 - 1092
  • [36] Parallel algorithms to evaluate orthogonal polynomial series
    Barrio, R
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06): : 2225 - 2239
  • [37] Parallel homotopy algorithms to solve polynomial systems
    Leykin, Anton
    Verschelde, Jan
    Zhuang, Yan
    MATHEMATICAL SOFTWARE-ICMS 2006, PROCEEDINGS, 2006, 4151 : 225 - 234
  • [39] POLYNOMIAL ALGORITHMS FOR FINDING CYCLES AND PATHS IN BIPARTITE TOURNAMENTS
    MANOUSSAKIS, Y
    TUZA, Z
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (04) : 537 - 543
  • [40] POLYNOMIAL ROOT-FINDING ALGORITHMS AND BRANCHED COVERS
    KIM, MH
    SUTHERLAND, S
    SIAM JOURNAL ON COMPUTING, 1994, 23 (02) : 415 - 436