Parallel algorithms for finding polynomial Roots on OTIS-torus

被引:7
|
作者
Lucas, Keny T. [1 ]
Jana, Prasanta K. [2 ]
机构
[1] Xavier Inst Social Serv, Dept Informat Management, Ranchi 834001, Bihar, India
[2] Mines Univ, Indian Sch, Dept Comp Sci & Engn, Dhanbad 826004, Bihar, India
来源
JOURNAL OF SUPERCOMPUTING | 2010年 / 54卷 / 02期
关键词
Parallel algorithms; Optoelectronic parallel computer; OTIS-2D torus; Polynomial roots; Durand-Kerner scheme; Ehrlich scheme; TOPOLOGICAL PROPERTIES; ZEROS;
D O I
10.1007/s11227-009-0312-7
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present two parallel algorithms for finding all the roots of an N-degree polynomial equation on an efficient model of Optoelectronic Transpose Interconnection System (OTIS), called OTIS-2D torus. The parallel algorithms are based on the iterative schemes of Durand-Kerner and Ehrlich methods. We show that the algorithm for the Durand-Kerner method requires (N (0.75)+0.5N (0.25)-1) electronic moves + 2(N (0.5)-1) OTIS moves using N processors. The parallel algorithm for Ehrlich method is shown to run in (N (0.75)+0.5N (0.25)-1) electronic moves + 2(N (0.5)-1) OTIS moves with the same number of processors. The algorithms have lower AT cost than the algorithms presented in Jana (Parallel Comput 32:301-312, 2006). The scalability of the algorithms is also discussed.
引用
收藏
页码:139 / 153
页数:15
相关论文
共 50 条
  • [21] ALGORITHMS FOR FINDING REAL ROOTS OF POLYNOMIALS
    BUENO, F
    ORTEGA, B
    ROTHSTEIN, M
    ACTA CIENTIFICA VENEZOLANA, 1978, 29 : 33 - 33
  • [22] Visualisations of parallel algorithms for reconfigurable torus computers
    Brown, J
    Martin, P
    Paku, N
    Turner, G
    OZCHI 98 - 1998 AUSTRALASIAN COMPUTER HUMAN INTERACTION CONFERENCE, PROCEEDINGS, 1998, : 152 - 159
  • [23] PARALLEL ALGORITHMS FOR MATRIX POLYNOMIAL DIVISION
    FAVATI, P
    LOTTI, G
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 22 (07) : 37 - 42
  • [24] Stability of parallel algorithms for polynomial evaluation
    Barrio, R
    Yalamov, P
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 46 (5-6) : 769 - 781
  • [25] ASYNCHRONOUS POLYNOMIAL ZERO-FINDING ALGORITHMS
    FREEMAN, TL
    BANE, MK
    PARALLEL COMPUTING, 1991, 17 (6-7) : 673 - 681
  • [26] Algorithms for quaternion polynomial root-finding
    Kalantari, Bahman
    JOURNAL OF COMPLEXITY, 2013, 29 (3-4) : 302 - 322
  • [27] Quantum Phase Estimation Algorithm for Finding Polynomial Roots
    Tansuwannont, Theerapat
    Limkumnerd, Surachate
    Suwanna, Sujin
    Kalasuwan, Pruet
    OPEN PHYSICS, 2019, 17 (01): : 839 - 849
  • [28] A GLOBALLY CONVERGENT METHOD FOR SIMULTANEOUSLY FINDING POLYNOMIAL ROOTS
    PASQUINI, L
    TRIGIANTE, D
    MATHEMATICS OF COMPUTATION, 1985, 44 (169) : 135 - 149
  • [29] A PERFORMANCE ANALYSIS OF NETWORK TOPOLOGIES IN FINDING THE ROOTS OF A POLYNOMIAL
    COSNARD, M
    FRAIGNIAUD, P
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 457 : 875 - 886
  • [30] A POLYALGORITHM FOR FINDING ROOTS AND ERROR BOUNDS FOR POLYNOMIAL EQUATIONS
    EIDSON, HD
    MCDONALD, AE
    WILKSINS.BM
    YOUNG, DM
    SIAM REVIEW, 1969, 11 (01) : 111 - &