Parallel algorithms for finding polynomial Roots on OTIS-torus

被引:7
|
作者
Lucas, Keny T. [1 ]
Jana, Prasanta K. [2 ]
机构
[1] Xavier Inst Social Serv, Dept Informat Management, Ranchi 834001, Bihar, India
[2] Mines Univ, Indian Sch, Dept Comp Sci & Engn, Dhanbad 826004, Bihar, India
来源
JOURNAL OF SUPERCOMPUTING | 2010年 / 54卷 / 02期
关键词
Parallel algorithms; Optoelectronic parallel computer; OTIS-2D torus; Polynomial roots; Durand-Kerner scheme; Ehrlich scheme; TOPOLOGICAL PROPERTIES; ZEROS;
D O I
10.1007/s11227-009-0312-7
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present two parallel algorithms for finding all the roots of an N-degree polynomial equation on an efficient model of Optoelectronic Transpose Interconnection System (OTIS), called OTIS-2D torus. The parallel algorithms are based on the iterative schemes of Durand-Kerner and Ehrlich methods. We show that the algorithm for the Durand-Kerner method requires (N (0.75)+0.5N (0.25)-1) electronic moves + 2(N (0.5)-1) OTIS moves using N processors. The parallel algorithm for Ehrlich method is shown to run in (N (0.75)+0.5N (0.25)-1) electronic moves + 2(N (0.5)-1) OTIS moves with the same number of processors. The algorithms have lower AT cost than the algorithms presented in Jana (Parallel Comput 32:301-312, 2006). The scalability of the algorithms is also discussed.
引用
收藏
页码:139 / 153
页数:15
相关论文
共 50 条
  • [1] Parallel algorithms for finding polynomial Roots on OTIS-torus
    Keny T. Lucas
    Prasanta K. Jana
    The Journal of Supercomputing, 2010, 54 : 139 - 153
  • [2] A parallel iteration method for finding roots of a polynomial
    Zhang, Xin
    Peng, Hong
    Zheng, Qilun
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 2408 - 2412
  • [3] A Parallel algorithm for finding all the roots of a polynomial
    Jin, YM
    Zhang, SY
    COMPUTER SCIENCE AND TECHNOLOGY IN NEW CENTURY, 2001, : 479 - 482
  • [4] A Parallel Algorithm for Finding Roots of a Complex Polynomial
    程锦松
    Journal of Computer Science and Technology, 1990, (01) : 71 - 81
  • [5] Efficient Quantum Algorithms of Finding the Roots of a Polynomial Function
    Nagata, Koji
    Nakamura, Tadao
    Geurdes, Han
    Batle, Josep
    Farouk, Ahmed
    Do Ngoc Diep
    Patro, Santanu Kumar
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (08) : 2546 - 2555
  • [6] Efficient Quantum Algorithms of Finding the Roots of a Polynomial Function
    Koji Nagata
    Tadao Nakamura
    Han Geurdes
    Josep Batle
    Ahmed Farouk
    Do Ngoc Diep
    Santanu Kumar Patro
    International Journal of Theoretical Physics, 2018, 57 : 2546 - 2555
  • [8] Polynomial interpolation and polynomial root finding on OTIS-mesh
    Jana, Prasanta K.
    PARALLEL COMPUTING, 2006, 32 (04) : 301 - 312
  • [9] A METHOD FOR FINDING ROOTS OF A POLYNOMIAL
    SOUKUP, J
    NUMERISCHE MATHEMATIK, 1969, 13 (04) : 349 - &
  • [10] A COMBINATORIAL CONSTRUCTION OF HIGH ORDER ALGORITHMS FOR FINDING POLYNOMIAL ROOTS OF KNOWN MULTIPLICITY
    Jin, Yi
    Kalantari, Bahman
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (06) : 1897 - 1906