Some basic properties of the generalized bi-periodic Fibonacci and Lucas sequences

被引:15
|
作者
Tan, Elif [1 ]
Leung, Ho-Hon [2 ]
机构
[1] Ankara Univ, Fac Sci, Dept Math, Ankara, Turkey
[2] UAEU, Dept Math Sci, Al Ain, U Arab Emirates
关键词
Horadam sequence; Bi-periodic Fibonacci sequence; Matrix method; 11B39; 05A15; IDENTITIES;
D O I
10.1186/s13662-020-2507-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a generalization of Horadam sequence {wn} which is defined by the recurrence relation wn=chi (n)wn-1+cwn-2, where chi (n)=a if n is even, chi (n)=b if n is odd with arbitrary initial conditions w0, w1 and nonzero real numbers a, b and c. As a special case, by taking the initial conditions 0, 1 and 2, b we define the sequences {un} and {vn}, respectively. The main purpose of this study is to derive some basic properties of the sequences {un}, {vn} and {wn} by using a matrix approach.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Convolutions of the bi-periodic Fibonacci numbers
    Komatsu, Takao
    Ramirez, Jose L.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (02): : 565 - 577
  • [32] DEDEKIND SUMS AND SOME GENERALIZED FIBONACCI AND LUCAS SEQUENCES
    Dilcher, Karl
    Meyer, Jeffrey L.
    FIBONACCI QUARTERLY, 2010, 48 (03): : 260 - 264
  • [33] Some Golden Ratio generalized Fibonacci and Lucas sequences
    Leyendekkers, J. V.
    Shannon, A. G.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (01) : 33 - 41
  • [34] On r-circulant matrices with generalized bi-periodic Fibonacci numbers
    Dagli, Mehmet
    Tan, Elif
    Olmez, Oktay
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 2003 - 2014
  • [35] Some properties of the generalized Fibonacci and Lucas sequences related to the extended Hecke groups
    Ikikardes, Sebahattin
    Sarigedik, Zehra
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [36] Some properties of the generalized Fibonacci and Lucas sequences related to the extended Hecke groups
    Sebahattin İkikardes
    Zehra Sarıgedik
    Journal of Inequalities and Applications, 2013
  • [37] On r-circulant matrices with generalized bi-periodic Fibonacci numbers
    Mehmet Daǧlı
    Elif Tan
    Oktay Ölmez
    Journal of Applied Mathematics and Computing, 2022, 68 : 2003 - 2014
  • [39] Some Properties of the Generalized Fibonacci and Lucas Numbers
    Djordjevic, Gospava B.
    Djordjevic, Snezana S.
    FILOMAT, 2020, 34 (08) : 2655 - 2665
  • [40] BI-PERIODIC HYPER-FIBONACCI NUMBERS
    Belaggoun, Nassima
    Belbachir, Hacene
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2025, 49 (04): : 603 - 614