Regression-based, regression-free and model-free approaches for robust online scale estimation

被引:1
|
作者
Schettlinger, Karen [1 ]
Gelper, Sarah [2 ]
Gather, Ursula [1 ]
Croux, Christophe [3 ]
机构
[1] Tech Univ Dortmund, Fak Stat, Inst Math Stat & Ind Anwendungen, D-44221 Dortmund, Germany
[2] Erasmus Univ, Erasmus Sch Econ, NL-3000 Rotterdam, Netherlands
[3] Katholieke Univ Leuven, Fac Business & Econ, B-3000 Leuven, Belgium
关键词
real-time estimation; robustness; time series; variability; volatility; SIGNAL EXTRACTION; TIME-SERIES; COMPONENTS;
D O I
10.1080/00949650902911565
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper compares the methods for variability extraction from a univariate time series in real time. The online scale estimation is achieved by applying a robust scale functional to a moving time window. Scale estimators based on the residuals of a preceding regression step are compared with regression-free and model-free techniques in a simulation study and in an application to a real time series. In the presence of level shifts or strong non-linear trends in the signal level, the model-free scale estimators perform especially well. However, the investigated regression-free and regression-based methods have higher breakdown points, they are applicable to data containing temporal correlations, and they are much more efficient.
引用
收藏
页码:1023 / 1040
页数:18
相关论文
共 50 条
  • [1] Regression-free and robust estimation of scale for bivariate data
    Rousseeuw, PJ
    Hubert, M
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1996, 21 (01) : 67 - 85
  • [2] Robust online scale estimation in time series: A model-free approach
    Gelper, Sarah
    Schettlinger, Karen
    Croux, Christophe
    Gather, Ursula
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (02) : 335 - 349
  • [3] Regression-Free Synthesis for Concurrency
    Cerny, Pavol
    Henzinger, Thomas A.
    Radhakrishna, Arjun
    Ryzhyk, Leonid
    Tarrach, Thorsten
    COMPUTER AIDED VERIFICATION, CAV 2014, 2014, 8559 : 568 - 584
  • [4] New approaches to model-free dimension reduction for bivariate regression
    Wen, Xuerong Meggie
    Cook, R. Dennis
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (03) : 734 - 748
  • [5] Shrinkage inverse regression estimation for model-free variable selection
    Bondell, Howard D.
    Li, Lexin
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 287 - 299
  • [6] Model-Free and Model-Based Active Learning for Regression
    O'Neill, Jack
    Delany, Sarah Jane
    MacNamee, Brian
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, 2017, 513 : 375 - 386
  • [7] A Regression-Free Rainfall Estimation Algorithm for Dual-Polarization Radars
    Pei, Bin
    Testik, Firat Y.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2018, 35 (08) : 1701 - 1721
  • [8] Towards regression testing and regression-free update for deep learning systems
    Li, Shuyue
    Fan, Ming
    Liu, Ting
    KNOWLEDGE-BASED SYSTEMS, 2025, 315
  • [9] A Model-Free Predictive Control Method Based on Polynomial Regression
    Li, Hongran
    Yamamoto, Shigeru
    PROCEEDINGS OF 2016 SICE INTERNATIONAL SYMPOSIUM ON CONTROL SYSTEMS (ISCS 2016), 2016, : 89 - 94
  • [10] Positive-Congruent Training: Towards Regression-Free Model Updates
    Yan, Sijie
    Xiong, Yuanjun
    Kundu, Kaustav
    Yang, Shuo
    Deng, Siqi
    Wang, Meng
    Xia, Wei
    Soatto, Stefano
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14294 - 14303