Model-Free and Model-Based Active Learning for Regression

被引:17
|
作者
O'Neill, Jack [1 ]
Delany, Sarah Jane [1 ]
MacNamee, Brian [2 ]
机构
[1] Dublin Inst Technol, Dublin, Ireland
[2] Univ Coll Dublin, Dublin, Ireland
关键词
D O I
10.1007/978-3-319-46562-3_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Training machine learning models often requires large labelled datasets, which can be both expensive and time-consuming to obtain. Active learning aims to selectively choose which data is labelled in order to minimize the total number of labels required to train an effective model. This paper compares model-free and model-based approaches to active learning for regression, finding that model-free approaches, in addition to being less computationally intensive to implement, are more effective in improving the performance of linear regressions than model-based alternatives.
引用
收藏
页码:375 / 386
页数:12
相关论文
共 50 条
  • [1] Prosocial learning: Model-based or model-free?
    Navidi, Parisa
    Saeedpour, Sepehr
    Ershadmanesh, Sara
    Hossein, Mostafa Miandari
    Bahrami, Bahador
    [J]. PLOS ONE, 2023, 18 (06):
  • [2] Model-based decision making and model-free learning
    Drummond, Nicole
    Niv, Yael
    [J]. CURRENT BIOLOGY, 2020, 30 (15) : R860 - R865
  • [3] Model-based regression adjustment with model-free covariates for network interference
    Han, Kevin
    Ugander, Johan
    [J]. JOURNAL OF CAUSAL INFERENCE, 2023, 11 (01)
  • [4] Model-Based and Model-Free Mechanisms of Human Motor Learning
    Haith, Adrian M.
    Krakauer, John W.
    [J]. PROGRESS IN MOTOR CONTROL: NEURAL, COMPUTATIONAL AND DYNAMIC APPROACHES, 2013, 782 : 1 - 21
  • [5] Model-based and Model-free Reinforcement Learning for Visual Servoing
    Farahmand, Amir Massoud
    Shademan, Azad
    Jagersand, Martin
    Szepesvari, Csaba
    [J]. ICRA: 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-7, 2009, : 4135 - 4142
  • [6] Model-based learning retrospectively updates model-free values
    Max Doody
    Maaike M. H. Van Swieten
    Sanjay G. Manohar
    [J]. Scientific Reports, 12
  • [7] Model-based learning retrospectively updates model-free values
    Doody, Max
    Van Swieten, Maaike M. H.
    Manohar, Sanjay G.
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [8] Expert Initialized Hybrid Model-Based and Model-Free Reinforcement Learning
    Langaa, Jeppe
    Sloth, Christoffer
    [J]. 2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [10] Model-Based and Model-Free Replay Mechanisms for Reinforcement Learning in Neurorobotics
    Massi, Elisa
    Barthelemy, Jeanne
    Mailly, Juliane
    Dromnelle, Remi
    Canitrot, Julien
    Poniatowski, Esther
    Girard, Benoit
    Khamassi, Mehdi
    [J]. FRONTIERS IN NEUROROBOTICS, 2022, 16