Shrinkage inverse regression estimation for model-free variable selection

被引:42
|
作者
Bondell, Howard D. [1 ]
Li, Lexin [1 ]
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
关键词
Inverse regression estimation; Non-negative garrotte; Sliced inverse regression; Sufficient dimension reduction; Variable selection; DIMENSION REDUCTION; CENTRAL SUBSPACE;
D O I
10.1111/j.1467-9868.2008.00686.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The family of inverse regression estimators that was recently proposed by Cook and Ni has proven effective in dimension reduction by transforming the high dimensional predictor vector to its low dimensional projections. We propose a general shrinkage estimation strategy for the entire inverse regression estimation family that is capable of simultaneous dimension reduction and variable selection. We demonstrate that the new estimators achieve consistency in variable selection without requiring any traditional model, meanwhile retaining the root n estimation consistency of the dimension reduction basis. We also show the effectiveness of the new estimators through both simulation and real data analysis.
引用
收藏
页码:287 / 299
页数:13
相关论文
共 50 条
  • [1] Model-free variable selection for conditional mean in regression
    Dong, Yuexiao
    Yu, Zhou
    Zhu, Liping
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 152
  • [2] Model-free variable selection
    Li, LX
    Cook, RD
    Nachtsheim, CJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 : 285 - 299
  • [3] MODEL-FREE COORDINATE TEST AND VARIABLE SELECTION VIA DIRECTIONAL REGRESSION
    Yu, Zhou
    Dong, Yuexiao
    [J]. STATISTICA SINICA, 2016, 26 (03) : 1159 - 1174
  • [4] ON MARGINAL SLICED INVERSE REGRESSION FOR ULTRAHIGH DIMENSIONAL MODEL-FREE FEATURE SELECTION
    Yu, Zhou
    Dong, Yuexiao
    Shao, Jun
    [J]. ANNALS OF STATISTICS, 2016, 44 (06): : 2594 - 2623
  • [5] GRADIENT-INDUCED MODEL-FREE VARIABLE SELECTION WITH COMPOSITE QUANTILE REGRESSION
    He, Xin
    Wang, Junhui
    Lv, Shaogao
    [J]. STATISTICA SINICA, 2018, 28 (03) : 1521 - 1538
  • [6] Shrinkage estimation and selection for a logistic regression model
    Hossain, Shakhawat
    Ahmed, S. Ejaz
    [J]. PERSPECTIVES ON BIG DATA ANALYSIS: METHODOLOGIES AND APPLICATIONS, 2014, 622 : 159 - 176
  • [7] Model-Free Deep Inverse Reinforcement Learning by Logistic Regression
    Eiji Uchibe
    [J]. Neural Processing Letters, 2018, 47 : 891 - 905
  • [8] Model-Free Deep Inverse Reinforcement Learning by Logistic Regression
    Uchibe, Eiji
    [J]. NEURAL PROCESSING LETTERS, 2018, 47 (03) : 891 - 905
  • [9] Knockoff boosted tree for model-free variable selection
    Jiang, Tao
    Li, Yuanyuan
    Motsinger-Reif, Alison A.
    [J]. BIOINFORMATICS, 2021, 37 (07) : 976 - 983
  • [10] MODEL-FREE SELECTION OF ORDERED AND CONTINUOUS VARIABLE COMBINATIONS
    TARTER, ME
    HILBERMANN, M
    KAMM, B
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 1974, 100 (06) : 529 - 529