Model-free variable selection

被引:65
|
作者
Li, LX
Cook, RD
Nachtsheim, CJ
机构
[1] Univ Calif Davis, Sch Med, Dept Biochem & Mol Med, Davis, CA 95616 USA
[2] Univ Minnesota, St Paul, MN 55108 USA
[3] Univ Minnesota, Minneapolis, MN USA
关键词
model selection; sliced inverse regression; stepwise regression; sufficient dimension reduction;
D O I
10.1111/j.1467-9868.2005.00502.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The importance of variable selection in regression has grown in recent years as computing power has encouraged the modelling of data sets of ever-increasing size. Data mining applications in finance, marketing and bioinformatics are obvious examples. A limitation of nearly all existing variable selection methods is the need to specify the correct model before selection. When the number of predictors is large, model formulation and validation can be difficult or even infeasible. On the basis of the theory of sufficient dimension reduction, we propose a new class of model-free variable selection approaches. The methods proposed assume no model of any form, require no nonparametric smoothing and allow for general predictor effects. The efficacy of the methods proposed is demonstrated via simulation, and an empirical example is given.
引用
收藏
页码:285 / 299
页数:15
相关论文
共 50 条
  • [1] Model-free variable selection for conditional mean in regression
    Dong, Yuexiao
    Yu, Zhou
    Zhu, Liping
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 152
  • [2] Knockoff boosted tree for model-free variable selection
    Jiang, Tao
    Li, Yuanyuan
    Motsinger-Reif, Alison A.
    [J]. BIOINFORMATICS, 2021, 37 (07) : 976 - 983
  • [3] MODEL-FREE SELECTION OF ORDERED AND CONTINUOUS VARIABLE COMBINATIONS
    TARTER, ME
    HILBERMANN, M
    KAMM, B
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 1974, 100 (06) : 529 - 529
  • [4] On dual model-free variable selection with two groups of variables
    Alothman, Ahmad
    Dong, Yuexiao
    Artemiou, Andreas
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 167 : 366 - 377
  • [5] Shrinkage inverse regression estimation for model-free variable selection
    Bondell, Howard D.
    Li, Lexin
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 287 - 299
  • [6] Trace Pursuit: A General Framework for Model-Free Variable Selection
    Yu, Zhou
    Dong, Yuexiao
    Zhu, Li-Xing
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (514) : 813 - 821
  • [7] Multiple Loci Mapping via Model-free Variable Selection
    Sun, Wei
    Li, Lexin
    [J]. BIOMETRICS, 2012, 68 (01) : 12 - 22
  • [8] Model-Free Variable Selection With Matrix-Valued Predictors
    Li, Zeda
    Dong, Yuexiao
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (01) : 171 - 181
  • [9] Model-free Variable Selection in Reproducing Kernel Hilbert Space
    Yang, Lei
    Lv, Shaogao
    Wang, Junhui
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [10] A model-free variable selection method for reducing the number of redundant variables
    Song, Anchao
    Ma, Tiefeng
    Lv, Shaogao
    Lin, Changsheng
    [J]. STATISTICS, 2018, 52 (06) : 1212 - 1248